Learning Objectives

Monday, March 2, 2020 9:39 AM

Learning objectives

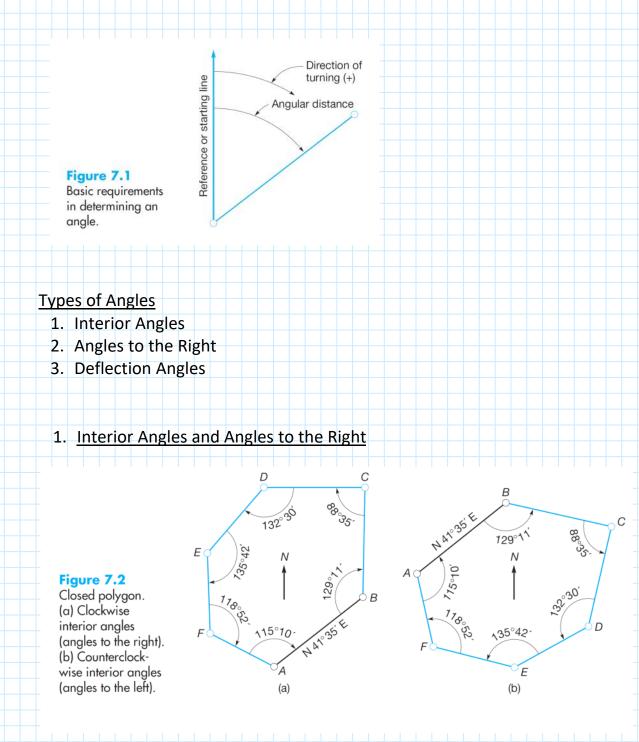
Homework Assignment 5

7.1 7.2 7.3 7.4 7.6 7.7

- 7.8
- 7.9
- 7.15

7.26 Use https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?#igrfwmm

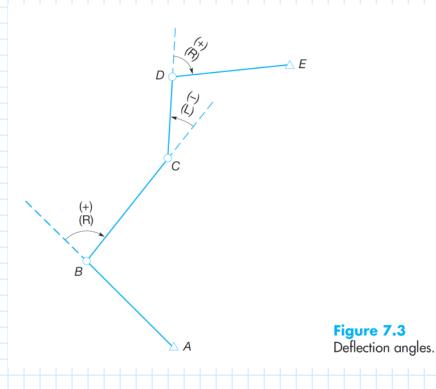
7.39


Angles, Azimuths & Bearings

Monday, March 2, 2020 9:39 AM

Introduction

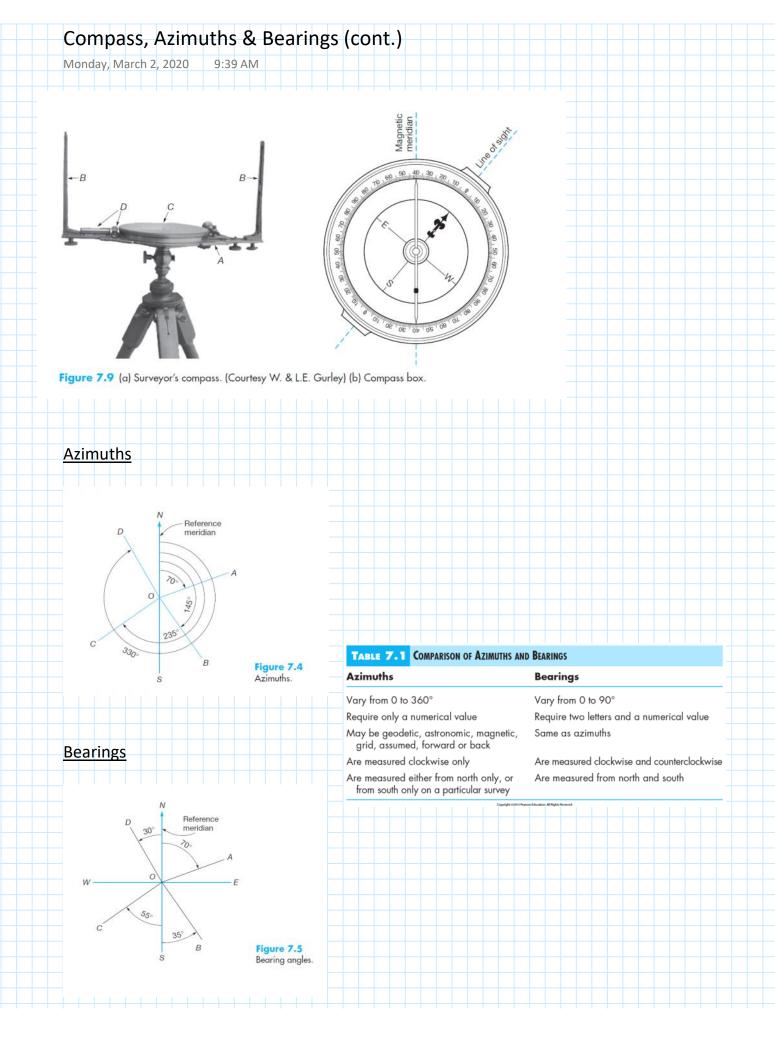
Determining the locations of points and orientations of lines frequently depends on the observation of angles and directions. In surveying, directions are given by azimuths and bearings


<u>Angles</u>

Angles, Azimuths & Bearings (cont.)

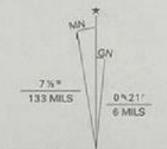
Monday, March 2, 2020 9:39 AM

Deflection Angles



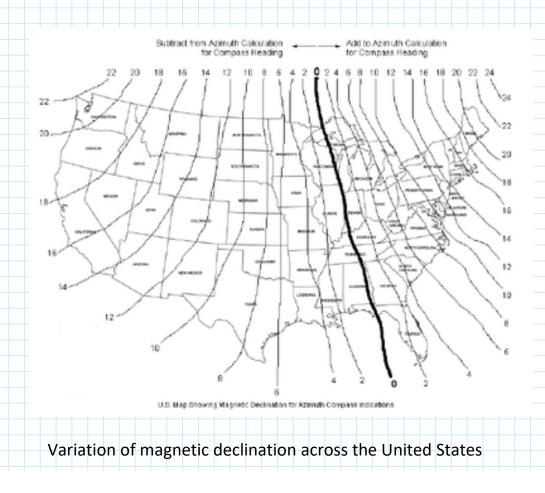
The direction of a Line

The direction of a line is defined by the horizontal angle between the line and an arbitrarily chosen reference line called a meridian. Different meridians are used for specifying directions including (a) **geodetic** (also often called true), (b) **astronomic**, (c) **magnetic**, (d) **grid**, (e) **record**, and (f) **assumed**.

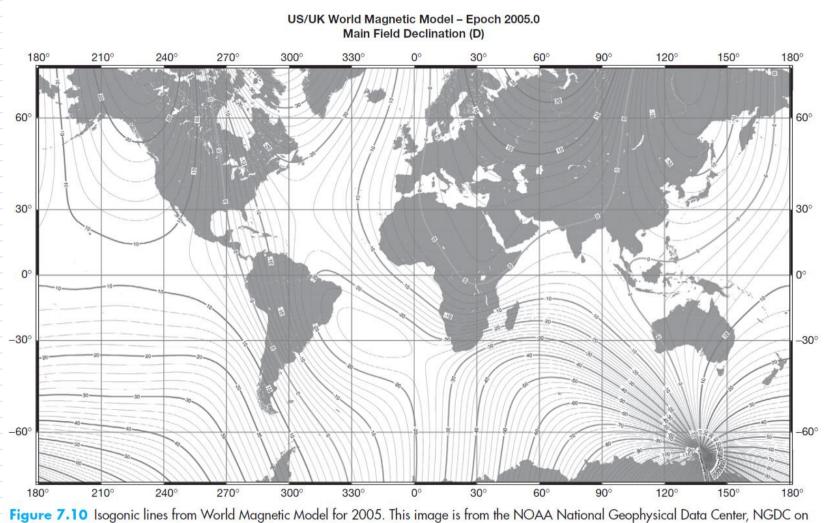

The **geodetic meridian** is the north-south reference line that passes through a mean position of the Earth's geographic poles .The positions of the poles defined as their mean locations between the <u>period of 1900 and 1905</u> (see Section 19.3).

The **astronomic meridian** is the north-south reference line that passes through the <u>instantaneous</u> position of the Earth's geographic poles. Astronomic meridians derive their name from the field operation to obtain them, which consists in making observations on the celestial objects like the Polaris (north star).

Monday, March 2, 2020 9:39 AM


A **magnetic meridian** is defined by a freely suspended magnetic needle that is only influenced by the Earth's magnetic field. The difference between a geodetic meridian defining **true north** and a magnetic meridian defining **magnetic north** is called the **magnetic declination**.

Magnetic Declination (as shown on a topography map)

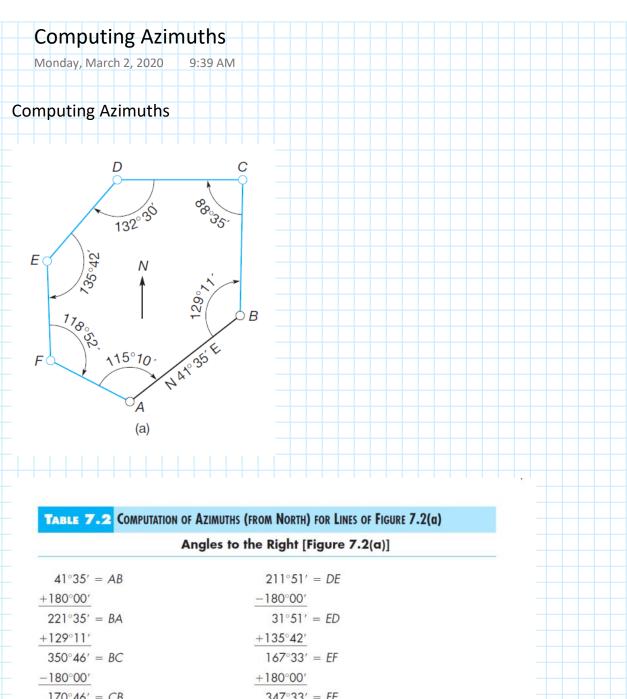

UTM GRID AND 2000 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

geodetic azimuth = magnetic azimuth + magnetic declination

Magnetic Declination (cont.)

Monday, March 2, 2020 9:39 AM

the Internet at http://www.ngdc.noaa.gov/seg/geomag/declination.shtml


Variation of magnetic declination across the globe

Magnetic Declination from Software

Monday, March 2, 2020 9:39 AM

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?#igrfwmm

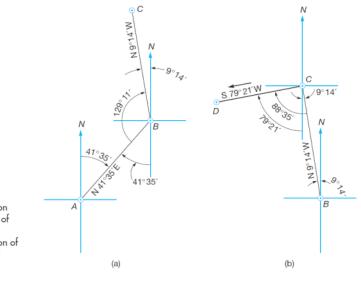
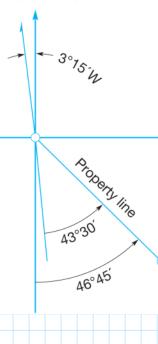
		Magr	netic Fie	eld Calc	culators		
Declination	U.S. Historic D			etic Field Componer			Registration
		Magna	tic Field F	etimated \			
		wayne		stimated \	alues 😈		
900 the calculato	r is based on the gu	fm1 model. A smoot	h transition from gut	fm1 to IGRF was imp	posed from 1890 to 1	erence Field (IGRF) r 1900. The Enhanced I	Magnetic Model
-MM) is a resear	ch model compiled fi	rom satellite marine	Aeromagnetic and Magnetic Fi		invevs which attemnt	s to include crustal va	riations in the
Model Used:	WMM-2020						
.atitude:	40° 36' 1" N						0
Longitude: Elevation:	112° 28' 52" W 0.0 km Mean Sea	Level					
Date	Declination (+E -W)	Inclination (+D -U)	Horizontal Intensity	North Comp (+ N - S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field
2022-05-11	11° 13' 55"	65° 28' 38"	21,182.3 nT	20,776.6 nT	4,125.9 nT	46,431.5 nT	51,035.0 nT
Change (co	00 51 4484			-14.6 nT/yr	-38.6 nT/yr	-106.0 nT/yr	-105.5 nT/yr
Uncertainty Model:	-0° 5' 41"/yr 0° 22' 0 WMM (2019-2024) 0 EMM (2000-2019) Year 2022 ~ Year 2022 ~	Month 5 V	-21.8 nT/yr 128 nT Day 11 ~ Day 11 ~	131 nT	94 nT	157 nT	145 nT
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 ~	0° 13' O IGRF (1590-2' Month 5 ~	128 nT 024) Day 11 ~				
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 ~ Year 2022 ~ 1.0	0° 13' O IGRF (1590-2' Month 5 ~	128 nT 124) Day 11 ~ Day 11 ~				
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 ~ Year 2022 ~ 1.0	0° 13' O IGRF (1590-21 Month 5 × Month 5 ×	128 nT 124) Day 11 ~ Day 11 ~				
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 ~ Year 2022 ~ 1.0	0° 13' O IGRF (1590-21 Month 5 × Month 5 ×	128 nT 124) Day 11 ~ Day 11 ~				
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 ~ Year 2022 ~ 1.0	0° 13' O IGRF (1590-21 Month 5 × Month 5 ×	128 nT 124) Day 11 ~ Day 11 ~				
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 ✓ Month 5 ✓ ✓ Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT	157 nT	145 nT
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 ✓ Month 5 ✓ ✓ Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT		145 nT
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 ✓ Month 5 ✓ ✓ Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT	157 nT	145 nT
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 ✓ Month 5 ✓ ✓ Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT	157 nT	145 nT
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 ✓ Month 5 ✓ ✓ Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT	157 nT	145 nT
Model:	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 < Month 5 ✓ < Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT	157 nT	145 nT
Incertainty Model: Start Date: End Date: Step size: Result forma Calculate	0° 22' WMM (2019-2024) EMM (2000-2019) Year 2022 \ Year 2022 \ 1.0 t: • HTML O	0° 13' ○ IGRF (1590-21 < Month 5 ✓ < Month 5 ✓ XML ○ CSV ○ J	128 nT 124) Day 11 ~ Day 11 ~ SON	131 nT	94 nT	157 nT	145 nT

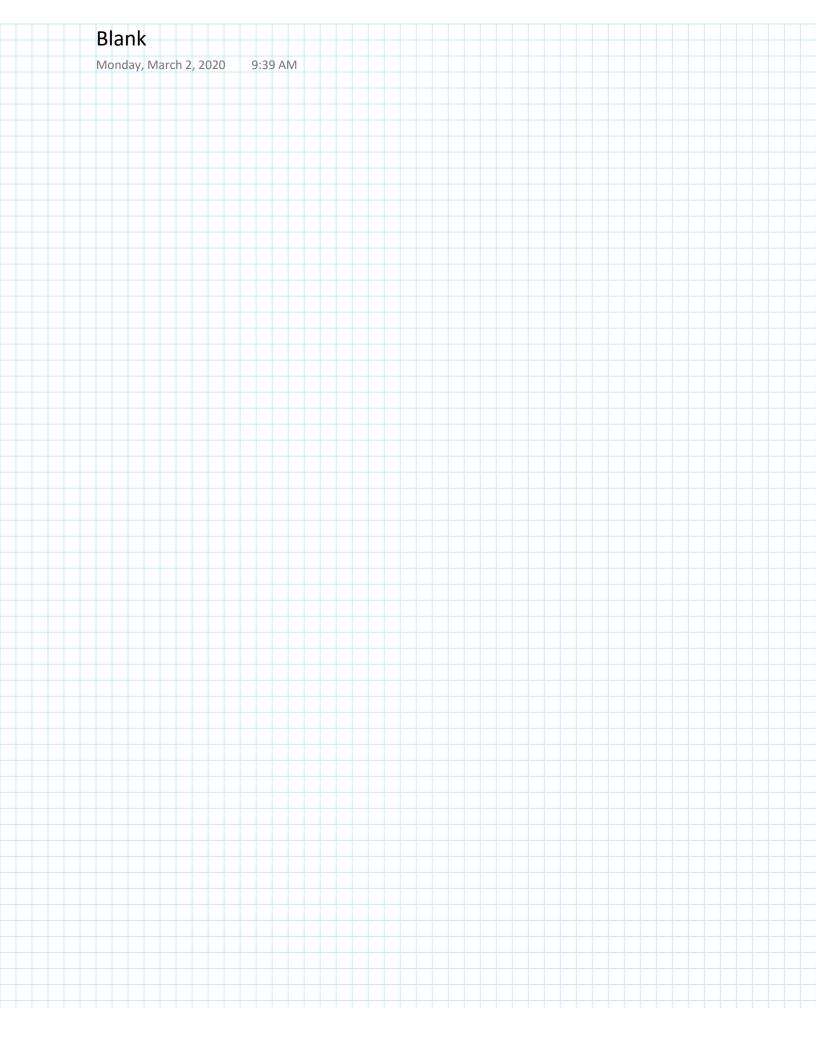
112/11	100 42
$350^{\circ}46' = BC$	$167^{\circ}33' = EF$
-180°00'	+180°00′
$170^{\circ}46' = CB$	347°33′ = FE
+88°35′	+118°52′
259°21′ = CD	$466^{\circ}25' - *360^{\circ} = 106^{\circ}25' = FA$
-180°00′	<u>-180°00′</u>
79°21′ = DC	$286^{\circ}25' = AF$
+132°30′	+115°10′
211°51′ = DE	401°35′ − *360° = 41°35′ = AB <i>∨</i>

*When a computed azimuth exceeds 360°, the correct azimuth is obtained by merely subtracting 360°.

Computing Bearings

Monday, March 2, 2020 9:39 AM


Figure 7.8 (a) Computation of bearing *BC* of Figure 7.2(a). (b) Computation of bearing *CD* of Figure 7.2(a).

.3 BEARINGS OF LINES IN FIGURE 7.2(a)				
e Bearing				
N41°35′E				
N9°14′W				
\$79°21′W				
\$31°51′W				
S12°27′E				
S73°35′E				
N41°35′E 🗸				

Figure 7.12 Computing geodetic bearings from magnetic bearings and declinations.

E

