Introduction to the Technicalities of a Least Squares Adjustment for Field Operators Instructor:

Alan R. Dragoo Maser Consulting PA

2018 Fall Conference October 18, 2018 College park, Maryland

Least Squares (Mathematically):

Is an adjustment where the sum of the weighted squares of the residuals is at a minimum.

How Does Least Squares Adjustments Work

- Least Squares Adjustments are used:
 - To adjust all the small random errors remaining after all the blunders and systematic errors have been removed.
 - When you want to more heavily weight some measurements more than others.
 - When you want to see the possible expected errors in your survey points.

How Does Least Squares Adjustments Work (Continued)

- When you want to evaluate the quality of your measurements.
- When you want to include redundant measurements that cannot be included in conventional adjustments.

What Type of Measurements Can be Adjusted in a Least Squares Adjustment

- Traverse
- Levels
- GNSS
 - Traverse with Levels
 - Levels with GNSS vectors
 - Traverse with GNSS vectors
 - Traverse with Levels with GNSS vectors

What Type of Data is Needed for a Least Squares Adjustment

- Traverse observations
 - Horizontal angles
 - Distances
 - Vertical angles
 - HI's
 - Known coordinates
 - Error estimates

What Type of Data is Needed for a Least Squares Adjustment (Continued)

- Levels
 - Differences in elevation
 - Known elevations
 - Error estimates

What Type of Data is Needed for a Least Squares Adjustment (Continued)

- GNSS
 - GNSS vectors
 - Error Estimates
 - How are the errors estimated for GNSS

Why Do the Field Operators Need to Understand Error Estimates

- Field operators need to help the office understand the accuracy for all their measurements.
- Office and the field need coordination to be sure the field is not exceeding the errors the office expects and to be sure the office is not expecting more accuracy than the field can deliver.

What Determines the Accuracy of Survey Measurements

- Project requirements
- Density and accuracy of existing control
- Quality of the instruments you are using
- Tolerances for quality of measurements
- Types of procedures you use
- Equipment properly adjusted

Traverse Errors

EDM Errors With Care

- Nominal accuracy
- Instrument Centering
- Reflector Centering
- Temperature & Pressure
- Instrument Constant
- Reflector Constant

±0.016 ft (5mm+5 ppm) ±0.005 ft ±0.005 ft ±5 ppm ±0.006 (2mm) ±0.006 (2mm)

Traverse Errors (Continued)

$\pm 3.0''(\text{DIN}) \times \sqrt{2}$

Angles:

- Pointing
- Collimation
- Parallax
- Inclination
- Environmental
- Tripod Stability

- 1" 30" Normal +
- 2" 3" Normal +
- 1"- 3" Normal +
- 1" 3" Normal +
- 1" 3" Normal +
- Centering Instrument & Targets ????

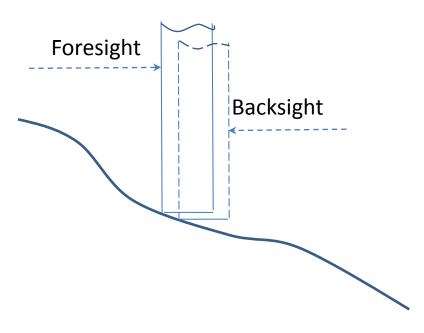
Traverse Errors (Continued)

Accessories:

- Tribrachs
- Tripods
- Thermometer
- Barometer

Leveling Errors

- Balance
- Type of leveling turning point
- Sight length


Leveling Tolerances

Order	First	First	Second	Second	Third			
Class	1	II	1	II				
Section misclosures (backward and forward)								
One-Setup Section	\pm 0.40mm	\pm 1.00mm						
Two runnings of a section less than 0.10 km in length	\pm 0.95mm	\pm 1.26mm	\pm 1.90mm	\pm 2.53mm	\pm 3.79mm			
Algebraic sum of all corrected section misclosures of a leveling line not to exceed	3vD	4√D	6√D	8√D	12√D			
Section misclosure not to exceed (mm)	3√E	4 √ E	6√E	8 √ E	12√E			
Loop misclosures								
Algebraic sum of all corrected misclosures not to exceed (mm)	4√F	5√F	6√F	8√F	12VF			
Loop misclosure not to exceed (mm)	4√F	5√F	6√F	8√F	12VF			
(D shortest length of leveling line (one-way) in km) (E shortest one-way length of section in km) (F length of loop in km)								

Leveling Without a Pin

- When leveling and the surface is not precisely flat, if the rod is not held at exactly the same location a systematic error will occur.
- Remember you are measuring very precisely especially with digital levels

Keep Sights Balanced

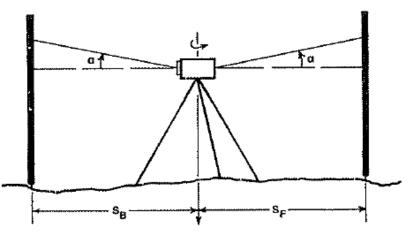
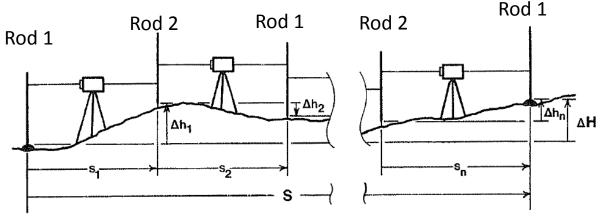
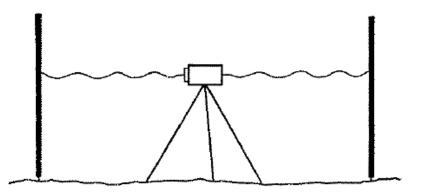
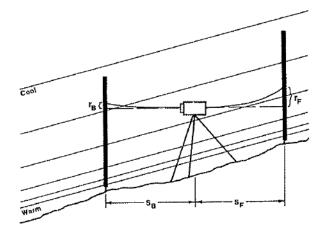



Figure 3-4.—Consistent collimation error cancels in a balanced setup since $s_B = s_F$.

• Requirements for First Order Second Order Second Order							
•	Lines of sight	Class 1	Class II	Class I	Class II	Third Order	
lines of Sight	Maximum sighting distance	160 Ft	195 Ft	195 Ft	230 Ft	295 Ft	
IIIES OF Sight	Maximum imbalance						
	<mark>Per Setup</mark>						
and balance.	Per Section	\pm 6Ft	\pm 15Ft	\pm 15Ft	\pm 33Ft	\pm 33Ft	
		\pm 13Ft	\pm 33Ft	\pm 33Ft	\pm 33Ft	\pm 33Ft	

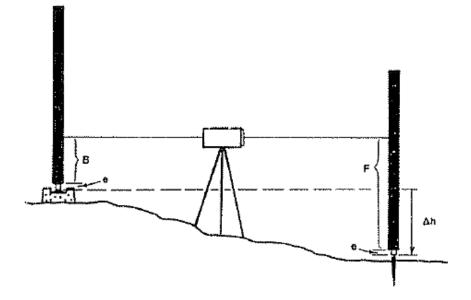


- When using two rods label them "Rod 1" and "Rod 2"
- Come of your known bench mark with "Rod 1" and go into your known bench mark with "Rod 1"
- Leap frog your rods.
- This will eliminate any rod length errors.



 Heat Shimmer Usually Cancels in a Balanced Setup.

Shimmer.


Refraction does not
Cancel even with Balanced
Setups. "No readings less
Than 1.5 ft"

Refraction error, *r*, does not cancel on sloping terrain since $r_B \neq r_F$, even if $s_B = s_F$.

MASER

• Using a Plug "Errors Cancel"

When using spacers the height, e, of each spacer cancels when the elevation difference, Δh , is computed: $\Delta h = (B+e) - (F+e) = B - F$.

GNSS Errors

- Tribrachs
- Range Pole Bubbles
- Range Pole Points
- HI's
- Multipath
- Short Observations

GNSS Errors (Continued)

- First Four Can be Elliminated by Using Fixed Height Tripods.
- If You Use Them Properly

How Do You Get Your Data Into Your Adjustment Program

- Trimble
 - Imports Trimble data very well
 - Imports other types of data but not so well
 - Imports GPS data very well
 - Imports RINEX data well
- Leica
 - Imports Leica data very well
 - Imports other types of data but not so well
 - Imports GPS data very well
 - Imports RINEX data.

How Do You Get Your Data Into Your Adjustment Program (Continued)

- StarNet
 - Imports Trimble data and Leica data
 - 14 Different data sources
 - GPS Vector data
 - 17 Different data sources

Adjustment Setup

justment General I	nstrument	Listing File	Other Files	Special	GPS	Modeling
Conventional				eveling		
Distance Constant:	0.005000	Feetl	IS g	ections as	s: @Le	ength 💿 Turns
Distance PPM:	2.000			lev Diff:	0.00500	
Angle:	2.000000	Seco	nds			
Direction:	3.000000	Seco	nds			
Azimuth / Bearing:	4.000000	Seco	nds			
Zenith:	5.000000	Seco	nds			
Elev Diff Constant:	0.050000	FeetU	IS			
Elev Diff PPM:	25.000					
Centering Errors:						
Horiz Instrument:	0.005000	Feet	JS			
Horiz Target:	0.005000	Feet	JS			
Vertical:	0.010000	Feet	JS			

Preliminary Import Error Checking

- Mean turned angles
- Level closures
- Tollarances
- GPS vectors

What Are Our Steps to Do the Adjustment

- Step 1
 - Sort Out the Errors From the Adjustment File
 - Eliminate Station Name Errors
 - Eliminate Possible Horizontal and Vertical Angle Errors
 - Eliminate Possible Distance Errors
 - Eliminate HI Errors

Preliminary Adjustment

- Make Corrections for Adjustment Errors
- Make Corrections for Any Blunder or Systematic Errors Discovered by the Adjustment.

Running the Adjustment

- Perform minimally constrained adjustment.
- Check for outliers.
 - Eliminate outliers.
- Set station weighting until Chi Square Test passes.
 - This sets your errors at the proper value from your initial estimate.
- Add one point at a time fixed horizontal.
- Check for outlines.
 - Eliminate outliers.

Running the Adjustment (Continued)

- Add one point at a time fixed vertical
- Check for outlines.
 Eliminate outliers.
- If while you are locking down your horizontal and vertical control if your Chi-Square Test fails, do not rescale your errors. Doing this will push the errors into your survey control.

Evaluating Your Adjustment

Reference Factor and Chi-Square Test

Adjustment Statistical Summary

Iterations	=	2
Number of Stations	=	7
Number of Observations	=	21
Number of Unknowns	=	15
Number of Redundant Obs	=	6

Observatio	n Count	Sum Squares	Error
		of StdRes	Factor
Coordinate	s 6	6.036	1.876
Angle	s 5	0.111	0.278
Distance	s 5	0.054	0.194
Zenith	. s 5	0.430	0.549
Tota	1 21	6.631	1.051
The	Chi-Square	Test at 5.00%	Level Passed

Lower/Upper Bounds (0.454/1.552)

Total Error Factor:

Also known as: ^ Reference Factor or Variance of unit weight ^O

The relationship between the observation errors and the predicted error.

- When they are the same the
- When the observation errors are less
- When the observation errors are more

Alan R. Dragoo adragoo@maserconsulting.com ©2018

σ

σ

_o <1

 $\sigma_0 = l$

Chi-Square Test

• Tests the total error factor to see if it is significantly greater than 1.0 or less than 1.0

Residual

- The difference between any observed value and its adjusted value.
 - This should always be small.

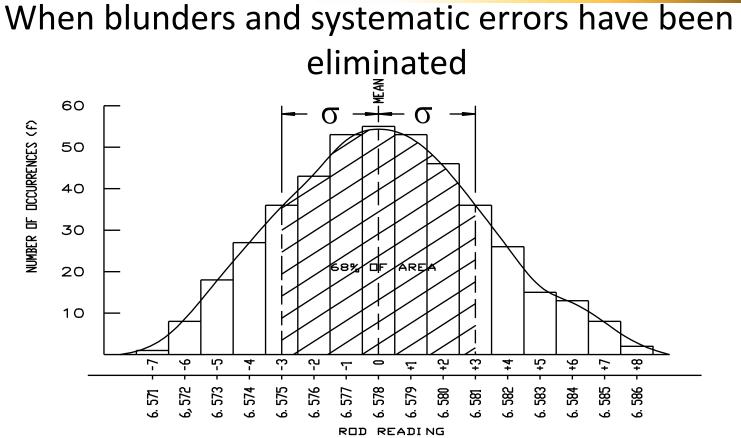
The Standardized Residual

The residual divided by the standard deviation

Observation	Residual	Std Error	Std Residual
1000.46 ft	.05 ft	.02 ft	2.50
100°12'23"	8″	12"	.66

The standardized residual is more sensitive to blunders than a residual, since it takes into consideration the geometry of the survey network.

• Standardized residuals that exceed 3 should be considered for rejection.



Residuals and Standardized Residuals In Your Adjustment

		Adj	usted Observations		5			
		-	ordinate Observati					
			rtially Fixed Coor	-				
Station		Component	Adj Coordinate	Residual		StdRes	File:Line	
304		Elev	162.0998	-0.0936	1:19			
		E	1355489.3610	-0.0390	0.0500	0.8		Standardized
1.0.0.1		N	524404.8372	-0.0307				Residual
1001		N	524583.4989	0.0628	1:21			Residual
		E	1355204.3408	0.0423	0.0500	0.8		7/
		Elev	162.0609	0.0343				
		-	asured Angle Obser					
At	From	То	Angle	Residual		StdRes	File: ine	
302	301	1001	82-24-01.32	-0-00-02.68	8.51	0.3	1 ·34	
303	302	304	347-59-38.93	-0-00-00.32	4.24	0.1	1:36	
302	301	303	182-02-23.82	-0-00-00.68	9.10	0.1	1:32	
303	302	306	103-41-50.00	0-00-00.00	25.67	0 0	1:40	
304	303	305	83-02-34.25	-0-00-00.00	10.97	0.0	- 28	
	Ad	justed Measu	red Distance Obser	vations (Feet	US)			
	From	То	Distance	Residual	StdErr	StdRes	File:Line	Residuals
	302	303	384.2409	0.0015	0.0091	0.2	1:32	
	303	304	407.5308	-0.0014	0.0092	0.2	1:36	
	302	1001	254.0652	0.0003	0.0090	0.0	1:34	
	304	305	140.2624	-0.0000	0.0088	0.0	1:38	
	303	306	58.7463	-0.0000	0.0088	0.0	1:40	
		Adjuste	d Zenith Observat:	ions (DMS)				
	From	То	Zenith	Residual	StdErr	StdRes	File:Line	
	303	304	88-34-48.77	-0-00-03.98	8.73	0.5	1:36	
	302	303	91-30-53.17	-0-00-04.08	9.09	0.4	1:32	
	302	1001	90-08-50.59	0-00-01.84	12.52	0.1	1:34	
	304	305	90-36-06.75	-0-00-00.00	21.39	0.0	1:38	
	303	306	93-00-38.00	-0-00-00.00	49.86	0.0	1:40	

Standard Deviation σ_s

The more measurements are repeated the more the frequency of reoccurring measurements plotted on a graph represent a bell shape curve clustered about the mean.

Standard Deviation

- Standard Deviation:
 - The name used to define the σ_s uncertainty of a single measurement of a set, to a defined level of confidence.
- Standard Deviation 1 sigma level:
 - 68.3% of a set of measurements fall σ_s This value from the arithmetic mean.

Standard Deviation

$$\sigma_{s} = \pm \sqrt{\frac{\sum v^{2}}{n-1}}$$

V = residual

n = number of observations

Calculation of the Standard Deviation σ_s

Obs #	Reading	v (residual)	√²
1	46.7"	-1.1"	1.21"
2	45.2"	-0.4"	0.16"
3	45.9"	+0.3"	0.09"
4	45.2"	-0.4"	0.16"
5	46.2"	+0.6"	0.36"
6	47.4"	+1.8"	3.24"
7	43.0"	-2.6"	6.76"
8	45.2"	-0.4"	0.16"
Mean:	45.6"	Total:	12.14"

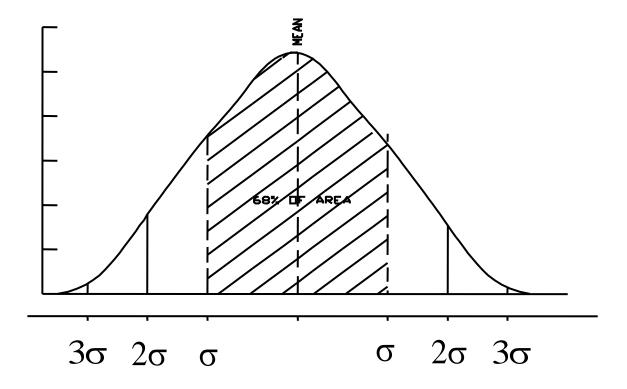
$$\sigma_{\rm s} = \pm \sqrt{\frac{12.14}{7}} \qquad \sigma_{\rm s} = \pm 1.32'$$

Alan R. Dragoo adragoo@maserconsulting.com ©2018

١

Standard Deviation in Your Adjustment

Man Comment STADINGT DOO	Discretion 1 Alter another I			
MicroSurvey STAR*NET-PRO				
File Edit Options Input	Run Output Tools View V	Window Help		
) 🙆 🖺 📂 🗔 🐚 🖨 🔍 🔮) 🖟 🖸 🖁 🕼 🖉 🗿	i 🕹 🛈 🛈 🖄 🚽	🗲 🗹 😢 🔯	ēT 👳
Output				
	Þ			
Su	ummary of Unadj	usted Inpu	it Observ	ations
		·		
	sured Angle Observat:			Std Errors
At Fro		Angle	StdErr	
302 301		182-02-24.50		0.01
302 301		82-24-04.00		0.00
303 302		347-59-39.25		.00
304 303		83-02-34.25		0.00
303 302	306	103-41-50.00	25.67 (0.00
	umber of Measured Di			- 기관까지 막다 아님께.
From To	Distance		HI HT	Comb Gild Type
302 303	384.2394	0.0091 5.7	30 5.320	0_^9556 S
302 1003	1 254.0649	0.0090 5.7	30 5.000	0.9999554 s
303 304	407.5322	0.0092 5.3	20 5.560	0.9999556 S
304 305	140.2624	0.0088 5.5	60 5.900	0.9999554 S
303 306	58.7463	0.0088 5.4	80 5.000	0.99995(0 5
	Number of Zeni	th Observation	s (DMS) = 5	Stal Errare
From To	Zenith	StdErr	HI	Std Errors
302 303	91-30-57.2	5 9.09	5.730	.0
302 100	1 90-08-48.7	5 12.52	5.730 5.00	00
303 304	88-34-52.7		5.320 5.50	
304 305			5.560 5.90	
303 306			5.480 5.00	


Levels of confidence

Name of error	Value	% Certainty		
Probable or CEP	0.6745 O	50%		
Standard Deviation	1 σ	68.3		
90% Error	1.6449 σ	90%		
Two Sigma or 95% Error	2 σ	95%		
99% Error	2.5 σ	99%		
Three Sigma	3 σ	99.70%		

(Note: Actually, the 95% error is closer to 1.96σ , but 2σ is often accepted as a convenient conversion.)

Standard Deviation with various levels of confidence

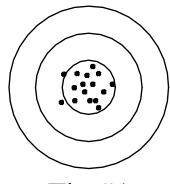
Standard Deviation of the Mean or Standard Error. σ_m

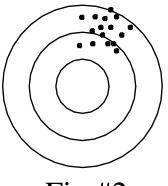
- Standard Deviation of the mean: σ
 - The ± uncertainty of the mean of a set of measurements, to a defined level of confidence.
 - The σ_{m} is relative to the true value for a set of measurements that have had all blunders and systematic errors removed.

$$\sigma_{m} = \frac{\sigma}{\sqrt{n}}$$
 n= Number of observations

Standard Error σ_{π}

- There is a 68.3% chance of being within
- $\pm \sigma_{m}$ of the unknown true value.




Confidence & Standard Error Relationships

- If you want more certainty that your measurements don't fall outside of your tolerance level, inflate the confidence level
- Doubling the certainty level will double the standard error
- To decrease the standard error, increase the accuracy, redundancy or known control.

Precision vs. Accuracy

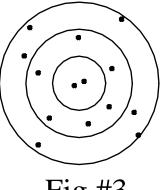
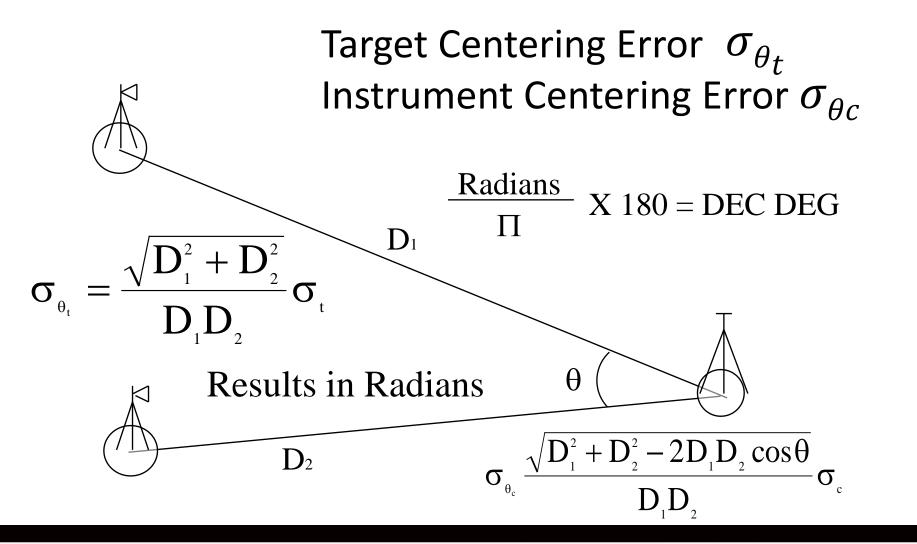


Fig #1

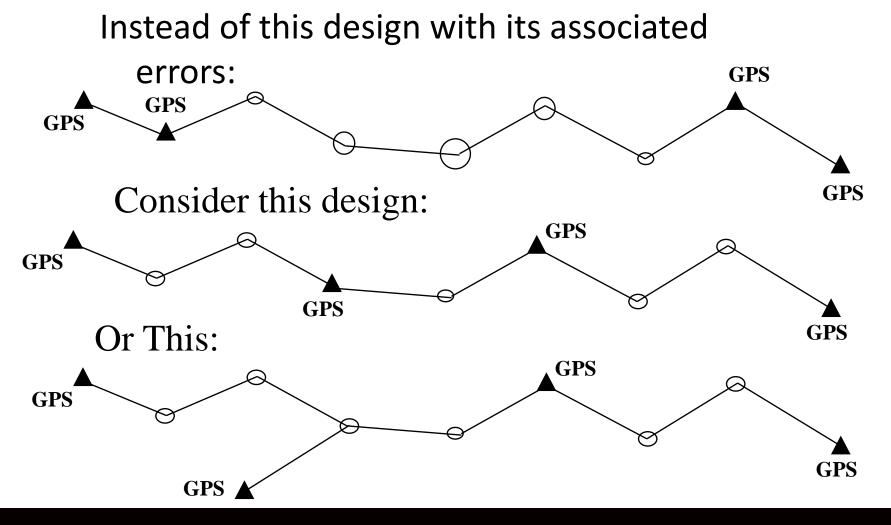
Fig #2


Fig #3

Grouping of rifle shots

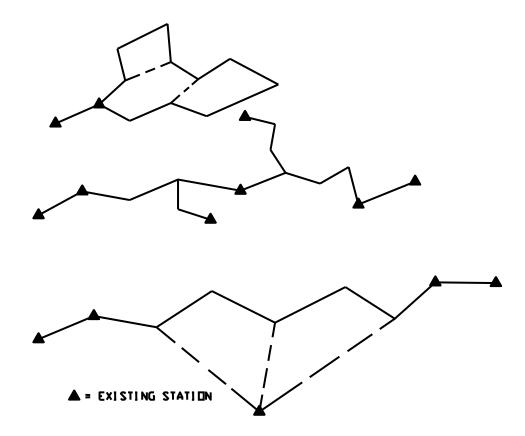
- Figure #1 & #2 shots are precise.
- Figure #1 & #3 shots are very accurate.
- Figure #1 shots are precise and accurate.
- Figure #2 shots are precise not accurate.
- Figure #3 shots are accurate not precise.

Understanding Errors



Error Propagation Due To Centering Errors for Instrument and Targets

Accurac	cy of M	easuring	Each Angle of a T	ravers	e					
Horz Angle		$\theta =$	180	Deg						
Back Dist		D _{1 =}	600.000	Ft						
Fwd Dist		$D_2 =$	600.000	Ft						
Target Centerin	ng Error	$\sigma_{t=}$	0.010	Ft	$\sigma_{\theta t}$	=	4.9	"		
Inst Centering E	Irror	σ_{c} =	0.010	Ft	$\sigma_{\theta c}$	=	6.9	"		
Number Posito	ns	n=	2							
Pointing Accura	асу	$\sigma_{p=}$	2.0	Sec						
Reading Accura	ісу	$\sigma_{r=1}$	2.0	Sec						
Instrment Error					$\sigma_{\sigma p}$	=	1.4	"		
Ponting Error					$\sigma_{\sigma r}$	=	1.4	11		
		Dist	5280	Ft	σ_{T}	=	8.7	"		
			206265							
			$\sigma_{\rm T}$	=	1	/	23,832	=Pre	ecisio	n
			Trav Dist							
			Precision	=	0.22	Ft	Ft Trav Error in F		eet	


Planning A Traverse

Planning A Traverse (Continued)

Add redundancy where possible and practical.

QUESTIONS?

