1.1 DEFINITION OF SURVEYING

Surveying, which has recently also been interchangeably called geomatics (see Section 1.2), has traditionally been defined as the science, art, and technology of determining the relative positions of points above, on, or beneath the Earth’s surface, or of establishing such points. In a more general sense, however, surveying (geomatics) can be regarded as that discipline which encompasses all methods for measuring and collecting information about the physical earth and our environment, processing that information, and disseminating a variety of resulting products to a wide range of clients. Surveying has been important since the beginning of civilization. Its earliest applications were in measuring and marking boundaries of property ownership. Throughout the years its importance has steadily increased with the growing demand for a variety of maps and other spatially related types of information and the expanding need for establishing accurate line and grade to guide construction operations.

Today the importance of measuring and monitoring our environment is becoming increasingly critical as our population expands, land values appreciate, our natural resources dwindle, and human activities continue to stress the quality of our land, water, and air. Using modern ground, aerial, and satellite technologies, and computers for data processing, contemporary surveyors are now able to measure and monitor the Earth and its natural resources on literally a global basis. Never before has so much information been available for assessing current conditions, making sound planning decisions, and formulating policy in a host of land-use, resource development, and environmental preservation applications.

Recognizing the increasing breadth and importance of the practice of surveying, the International Federation of Surveyors (see Section 1.11) adopted the following definition:
“A surveyor is a professional person with the academic qualifications and technical expertise to conduct one, or more, of the following activities;

- to determine, measure and represent the land, three-dimensional objects, point-fields, and trajectories;
- to assemble and interpret land and geographically related information;
- to use that information for the planning and efficient administration of the land, the sea and any structures thereon; and
- to conduct research into the above practices and to develop them.

Detailed Functions
The surveyor’s professional tasks may involve one or more of the following activities, which may occur either on, above, or below the surface of the land or the sea and may be carried out in association with other professionals.

1. The determination of the size and shape of the earth and the measurements of all data needed to define the size, position, shape and contour of any part of the earth and monitoring any change therein.
2. The positioning of objects in space and time as well as the positioning and monitoring of physical features, structures and engineering works on, above or below the surface of the earth.
3. The development, testing and calibration of sensors, instruments and systems for the above-mentioned purposes and for other surveying purposes.
4. The acquisition and use of spatial information from close range, aerial and satellite imagery and the automation of these processes.
5. The determination of the position of the boundaries of public or private land, including national and international boundaries, and the registration of those lands with the appropriate authorities.
6. The design, establishment and administration of geographic information systems (GIS) and the collection, storage, analysis, management, display and dissemination of data.
7. The analysis, interpretation and integration of spatial objects and phenomena in GIS, including the visualization and communication of such data in maps, models and mobile digital devices.
8. The study of the natural and social environment, the measurement of land and marine resources and the use of such data in the planning of development in urban, rural and regional areas.
9. The planning, development and redevelopment of property, whether urban or rural and whether land or buildings.
10. The assessment of value and the management of property, whether urban or rural and whether land or buildings.
11. The planning, measurement and management of construction works, including the estimation of costs.

In application of the foregoing activities surveyors take into account the relevant legal, economic, environmental, and social aspects affecting each project.”
The breadth and diversity of the practice of surveying (geomatics), as well as its importance in modern civilization, are readily apparent from this definition.

1.2 GEOMATICS

As noted in Section 1.1, geomatics is a relatively new term that is now commonly being applied to encompass the areas of practice formerly identified as surveying. The name has gained widespread acceptance in the United States, as well as in other English-speaking countries of the world, especially in Canada, the United Kingdom, and Australia. In the United States, the Surveying Engineering Division of The American Society of Civil Engineers changed its name to the Geomatics Division. Many college and university programs in the United States that were formerly identified as “Surveying” or “Surveying Engineering” are now called “Geomatics” or “Geomatics Engineering.”

The principal reason cited for making the name change is that the manner and scope of practice in surveying have changed dramatically in recent years. This has occurred in part because of recent technological developments that have provided surveyors with new tools for measuring and/or collecting information, for computing, and for displaying and disseminating information. It has also been driven by increasing concerns about the environment locally, regionally, and globally, which have greatly exacerbated efforts in monitoring, managing, and regulating the use of our land, water, air, and other natural resources. These circumstances, and others, have brought about a vast increase in demands for new spatially related information.

Historically surveyors made their measurements using ground-based methods and until rather recently the transit and tape\(^1\) were their primary instruments. Computations, analyses, and the reports, plats, and maps they delivered to their clients were prepared (in hard copy form) through tedious manual processes. Today the modern surveyor’s arsenal of tools for measuring and collecting environmental information includes electronic instruments for automatically measuring distances and angles, satellite surveying systems for quickly obtaining precise positions of widely spaced points, and modern aerial digital imaging and laser-scanning systems for quickly mapping and collecting other forms of data about the earth upon which we live. In addition, computer systems are available that can process the measured data and automatically produce plats, maps, and other products at speeds unheard of a few years ago. Furthermore, these products can be prepared in electronic formats and be transmitted to remote locations via telecommunication systems.

Concurrent with the development of these new data collection and processing technologies, geographic information systems (GISs) have emerged and matured. These computer-based systems enable virtually any type of spatially related information about the environment to be integrated, analyzed,
INTRODUCTION

displayed, and disseminated. The key to successfully operating geographic information systems is spatially related data of high quality, and the collection and processing of this data placing great new demands upon the surveying community.

As a result of these new developments noted above, and others, many feel that the name surveying no longer adequately reflects the expanded and changing role of their profession. Hence the new term geomatics has emerged. In this text, the terms surveying and geomatics are both used, although the former is used more frequently. Nevertheless students should understand that the two terms are synonymous as discussed above.

1.3 HISTORY OF SURVEYING

The oldest historical records in existence today that bear directly on the subject of surveying state that this science began in Egypt. Herodotus recorded that Sesostris (about 1400 B.C.) divided the land of Egypt into plots for the purpose of taxation. Annual floods of the Nile River swept away portions of these plots, and surveyors were appointed to replace the boundaries. These early surveyors were called rope-stretchers, since their measurements were made with ropes having markers at unit distances.

As a consequence of this work, early Greek thinkers developed the science of geometry. Their advance, however, was chiefly along the lines of pure science. Heron stands out prominently for applying science to surveying in about 120 B.C. He was the author of several important treatises of interest to surveyors, including The Dioptra, which related the methods of surveying a field, drawing a plan, and making related calculations. It also described one of the first pieces of surveying equipment recorded, the diopter [Figure 1.1(a)]. For many years Heron’s work was the most authoritative among Greek and Egyptian surveyors.

Significant development in the art of surveying came from the practical-minded Romans, whose best-known writing on surveying was by Frontinus. Although the original manuscript disappeared, copied portions of his work have been preserved. This noted Roman engineer and surveyor, who lived in the first century, was a pioneer in the field, and his essay remained the standard for many years. The engineering ability of the Romans was demonstrated by their extensive construction work throughout the empire. Surveying necessary for this construction resulted in the organization of a surveyors’ guild. Ingenious instruments were developed and used. Among these were the groma [Figure 1.1(b)], used for sighting; the libella, an A-frame with a plumb bob, for leveling; and the chorobates, a horizontal straightedge about 20 ft long with supporting legs and a groove on top for water to serve as a level.

One of the oldest Latin manuscripts in existence is the Codex Acerianus, written in about the sixth century. It contains an account of surveying as practiced by the Romans and includes several pages from Frontinus’s treatise. The

2Geographic information systems are briefly introduced in Section 1.9, and then described in greater detail in Chapter 28.
1.3 History of Surveying

Figure 1.1
Historical surveying instruments: (a) the dioptr, (b) the groma.

manuscript was found in the 10th century by Gerbert and served as the basis for his text on geometry, which was largely devoted to surveying.

During the Middle Ages, the Arabs kept Greek and Roman science alive. Little progress was made in the art of surveying, and the only writings pertaining to it were called “practical geometry.”

In the 13th century, Von Piso wrote Practica Geometria, which contained instructions on surveying. He also authored Liber Quadratorum, dealing chiefly with the quadrans, a square brass frame having a 90° angle and other graduated scales. A movable pointer was used for sighting. Other instruments of the period were the astrolabe, a metal circle with a pointer hinged at its center and held by a ring at the top, and the cross staff, a wooden rod about 4 ft long with an adjustable crossarm at right angles to it. The known lengths of the arms of the cross staff permitted distances to be measured by proportion and angles.

Early civilizations assumed the Earth to be a flat surface, but by noting the Earth’s circular shadow on the moon during lunar eclipses and watching ships gradually disappear as they sailed toward the horizon, it was slowly deduced that the planet actually curved in all directions.

Determining the true size and shape of the Earth has intrigued humans for centuries. History records that a Greek named Eratosthenes was among the first to compute its dimensions. His procedure, which occurred about 200 B.C., is illustrated in Figure 1.2. Eratosthenes had concluded that the Egyptian cities of Alexandria and Syene were located approximately on the same meridian, and he had also observed that at noon on the summer solstice, the sun was directly overhead at Syene. (This was apparent because at that time of that day, the image of
the sun could be seen reflecting from the bottom of a deep vertical well there.) He reasoned that at that moment, the sun, Syene, and Alexandria were in a common meridian plane, and if he could measure the arc length between the two cities, and the angle it subtended at the Earth’s center, he could compute the Earth’s circumference. He determined the angle by measuring the length of the shadow cast at Alexandria from a vertical staff of known length. The arc length was found from multiplying the number of caravan days between Syene and Alexandria by the average daily distance traveled. From these measurements, Eratosthenes calculated the Earth’s circumference to be about 25,000 mi. Subsequent precise geodetic measurements using better instruments, but techniques similar geometrically to Eratosthenes’, have shown his value, though slightly too large, to be amazingly close to the currently accepted one. (Actually, as explained in Chapter 19, the Earth approximates an oblate spheroid having an equatorial radius about 13.5 mi longer than the polar radius.)

In the 18th and 19th centuries, the art of surveying advanced more rapidly. The need for maps and locations of national boundaries caused England and France to make extensive surveys requiring accurate triangulation; thus, geodetic surveying began. The U.S. Coast Survey (now the National Geodetic Survey of the U.S. Department of Commerce) was established by an act of Congress in 1807. Initially its charge was to perform hydrographic surveys and prepare nautical charts. Later its activities were expanded to include establishment of reference monuments of precisely known positions throughout the country.

Increased land values and the importance of precise boundaries, along with the demand for public improvements in the canal, railroad, and turnpike eras, brought surveying into a prominent position. More recently, the large volume of general construction, numerous land subdivisions that require precise records, and demands posed by the fields of exploration and ecology have entailed an augmented surveying program. Surveying is still the sign of progress in the development, use, and preservation of the Earth’s resources.
In addition to meeting a host of growing civilian needs, surveying has always played an important role in our nation’s defense activities. World Wars I and II, the Korean and Vietnam conflicts, and the more recent conflicts in the Middle East and Europe have created staggering demands for precise measurements and accurate maps. These military operations also provided the stimulus for improving instruments and methods to meet these needs. Surveying also contributed to, and benefited from, the space program where new equipment and systems were needed to provide precise control for missile alignment and for mapping and charting portions of the moon and nearby planets.

Developments in surveying and mapping equipment have now evolved to the point where the traditional instruments that were used until about the 1960s or 1970s—the transit, theodolite, dumpy level, and steel tape—have now been almost completely replaced by an array of new “high-tech” instruments. These include electronic total station instruments, which can be used to automatically measure and record horizontal and vertical distances, and horizontal and vertical angles; and global navigation satellite systems (GNSS) such as the global positioning system (GPS) that can provide precise location information for virtually any type of survey. Laser-scanning instruments combine automatic distance and angle measurements to compute dense grids of coordinated points. Also new aerial cameras and remote sensing instruments have been developed, which provide images in digital form, and these images can be processed to obtain spatial information and maps using new digital photogrammetric restitution instruments (also called softcopy plotters). Figure 1.3, 1.4, 1.5, and 1.6, respectively, show a total station instrument, 3D mobile mapping system, laser-scanning instrument, and modern softcopy plotter. The 3D mobile mapping system in Figure 1.4 is an integrated system consisting of scanners, GNSS receiver, inertial measurement unit, and a high-quality hemispherical digital camera that can map all items within 30 m of the vehicle as the vehicle travels at highway speeds. The system can capture 1.3 million data points per second providing the end user with high-quality, georeferenced coordinates on all items visible in the images.

Figure 1.3
LEICA TPS 1100 total station instrument.
(Courtesy Leica Geosystems AG.)
Figure 1.4
The IP-S2 3D mobile mapping system.
(Courtesy Topcon Positioning Systems.)

Figure 1.5
LEICA HDS 3000 laser scanner.
(Courtesy of Christopher Gibbons, Leica Geosystems AG.)
1.4 Geodetic and Plane Surveys

Two general classifications of surveys are geodetic and plane. They differ principally in the assumptions on which the computations are based, although field measurements for geodetic surveys are usually performed to a higher order of accuracy than those for plane surveys.

In geodetic surveying, the curved surface of the Earth is considered by performing the computations on an ellipsoid (curved surface approximating the size and shape of the Earth—see Chapter 19). It is now becoming common to do geodetic computations in a three-dimensional, Earth-centered, Earth-fixed (ECEF) Cartesian coordinate system. The calculations involve solving equations derived from solid geometry and calculus. Geodetic methods are employed to determine relative positions of widely spaced monuments and to compute lengths and directions of the long lines between them. These monuments serve as the basis for referencing other subordinate surveys of lesser extents.

In early geodetic surveys, painstaking efforts were employed to accurately observe angles and distances. The angles were measured using precise ground-based theodolites, and the distances were measured using special tapes made from metal having a low coefficient of thermal expansion. From these basic measurements, the relative positions of the monuments were computed. Later, electronic instruments were used for observing the angles and distances. Although these latter types of instruments are still sometimes used on geodetic surveys, satellite positioning has now almost completely replaced other instruments for these types of surveys. Satellite positioning can provide the needed positions with much
greater accuracy, speed, and economy. GNSS receivers enable ground stations to be located precisely by observing distances to satellites operating in known positions along their orbits. GNSS surveys are being used in all forms of surveying including geodetic, hydrographic, construction, and boundary surveying. The principles of operation of the global positioning system are given in Chapter 13, field and office procedures used in static GNSS surveys are discussed in Chapter 14, and the methods used in kinematic GNSS surveys are discussed in Chapter 15.

In plane surveying, except for leveling, the reference base for fieldwork and computations is assumed to be a flat horizontal surface. The direction of a plumb line (and thus gravity) is considered parallel throughout the survey region, and all observed angles are presumed to be plane angles. For areas of limited size, the surface of our vast ellipsoid is actually nearly flat. On a line 5 mi long, the ellipsoidal arc and chord lengths differ by only about 0.02 ft. A plane surface tangent to the ellipsoid departs only about 0.7 ft at 1 mi from the point of tangency. In a triangle having an area of 75 square miles, the difference between the sum of the three ellipsoidal angles and three plane angles is only about 1 sec. Therefore, it is evident that except in surveys covering extensive areas, the Earth’s surface can be approximated as a plane, thus simplifying computations and techniques. In general, algebra, plane and analytical geometry, and plane trigonometry are used in plane-surveying calculations. Even for very large areas, map projections, such as those described in Chapter 20, allow plane-surveying computations to be used. This book concentrates primarily on methods of plane surveying, an approach that satisfies the requirements of most projects.

1.5 IMPORTANCE OF SURVEYING

Surveying is one of the world’s oldest and most important arts because, as noted previously, from the earliest times it has been necessary to mark boundaries and divide land. Surveying has now become indispensable to our modern way of life. The results of today’s surveys are used to (1) map the Earth above and below sea level; (2) prepare navigational charts for use in the air, on land, and at sea; (3) establish property boundaries of private and public lands; (4) develop data banks of land-use and natural resource information that aid in managing our environment; (5) determine facts on the size, shape, gravity, and magnetic fields of the earth; and (6) prepare charts of our moon and planets.

Surveying continues to play an extremely important role in many branches of engineering. For example, surveys are required to plan, construct, and maintain highways, railroads, rapid-transit systems, buildings, bridges, missile ranges, launching sites, tracking stations, tunnels, canals, irrigation ditches, dams, drainage works, urban land subdivisions, water supply and sewage systems, pipelines, and mine shafts. Surveying methods are commonly employed in laying out industrial assembly lines and jigs. These methods are also used for guiding the fabrication of large equipment, such as airplanes and ships, where separate pieces that have been assembled at different locations must ultimately be connected as a

3See footnote 1.
1.6 Specialized Types of Surveys

Surveying is important in many related tasks in agronomy, archeology, astronomy, forestry, geography, geology, geophysics, landscape architecture, meteorology, paleontology, and seismology, but particularly in military and civil engineering.

All engineers must know the limits of accuracy possible in construction, plant design and layout, and manufacturing processes, even though someone else may do the actual surveying. In particular, surveyors and civil engineers who are called on to design and plan surveys must have a thorough understanding of the methods and instruments used, including their capabilities and limitations. This knowledge is best obtained by making observations with the kinds of equipment used in practice to get a true concept of the theory of errors and the small but recognizable differences that occur in observed quantities.

In addition to stressing the need for reasonable limits of accuracy, surveying emphasizes the value of significant figures. Surveyors and engineers must know when to work to hundredths of a foot instead of to tenths or thousandths, or perhaps the nearest foot, and what precision in field data is necessary to justify carrying out computations to the desired number of decimal places. With experience, they learn how available equipment and personnel govern procedures and results.

Neat sketches and computations are the mark of an orderly mind, which in turn is an index of sound engineering background and competence. Taking field notes under all sorts of conditions is excellent preparation for the kind of recording and sketching expected of all engineers. Performing later office computations based on the notes underscores their importance. Additional training that has a carryover value is obtained in arranging computations in an organized manner.

Engineers who design buildings, bridges, equipment, and so on are fortunate if their estimates of loads to be carried are correct within 5%. Then a factor of safety of 2 or more is often applied. But except for some topographic work, only exceedingly small errors can be tolerated in surveying, and there is no factor of safety. Traditionally, therefore, both manual and computational precision are stressed in surveying.

1.6 Specialized Types of Surveys

Many types of surveys are so specialized that a person proficient in a particular discipline may have little contact with the other areas. Persons seeking careers in surveying and mapping, however, should be knowledgeable in every phase, since all are closely related in modern practice. Some important classifications are described briefly here.

Control surveys establish a network of horizontal and vertical monuments that serve as a reference framework for initiating other surveys. Many control surveys performed today are done using techniques discussed in Chapter 14 with GNSS instruments.

Topographic surveys determine locations of natural and artificial features and elevations used in map making.

Land, boundary, and cadastral surveys establish property lines and property corner markers. The term cadastral is now generally applied to surveys of the

unit. Surveying is important in many related tasks in agronomy, archeology, astronomy, forestry, geography, geology, geophysics, landscape architecture, meteorology, paleontology, and seismology, but particularly in military and civil engineering.

All engineers must know the limits of accuracy possible in construction, plant design and layout, and manufacturing processes, even though someone else may do the actual surveying. In particular, surveyors and civil engineers who are called on to design and plan surveys must have a thorough understanding of the methods and instruments used, including their capabilities and limitations. This knowledge is best obtained by making observations with the kinds of equipment used in practice to get a true concept of the theory of errors and the small but recognizable differences that occur in observed quantities.

In addition to stressing the need for reasonable limits of accuracy, surveying emphasizes the value of significant figures. Surveyors and engineers must know when to work to hundredths of a foot instead of to tenths or thousandths, or perhaps the nearest foot, and what precision in field data is necessary to justify carrying out computations to the desired number of decimal places. With experience, they learn how available equipment and personnel govern procedures and results.

Neat sketches and computations are the mark of an orderly mind, which in turn is an index of sound engineering background and competence. Taking field notes under all sorts of conditions is excellent preparation for the kind of recording and sketching expected of all engineers. Performing later office computations based on the notes underscores their importance. Additional training that has a carryover value is obtained in arranging computations in an organized manner.

Engineers who design buildings, bridges, equipment, and so on are fortunate if their estimates of loads to be carried are correct within 5%. Then a factor of safety of 2 or more is often applied. But except for some topographic work, only exceedingly small errors can be tolerated in surveying, and there is no factor of safety. Traditionally, therefore, both manual and computational precision are stressed in surveying.

1.6 Specialized Types of Surveys

Many types of surveys are so specialized that a person proficient in a particular discipline may have little contact with the other areas. Persons seeking careers in surveying and mapping, however, should be knowledgeable in every phase, since all are closely related in modern practice. Some important classifications are described briefly here.

Control surveys establish a network of horizontal and vertical monuments that serve as a reference framework for initiating other surveys. Many control surveys performed today are done using techniques discussed in Chapter 14 with GNSS instruments.

Topographic surveys determine locations of natural and artificial features and elevations used in map making.

Land, boundary, and cadastral surveys establish property lines and property corner markers. The term cadastral is now generally applied to surveys of the
public lands systems. There are three major categories: original surveys to establish new section corners in unsurveyed areas that still exist in Alaska and several western states; retracement surveys to recover previously established boundary lines; and subdivision surveys to establish monuments and delineate new parcels of ownership. Condominium surveys, which provide a legal record of ownership, are a type of boundary survey.

Hydrographic surveys define shorelines and depths of lakes, streams, oceans, reservoirs, and other bodies of water. Sea surveying is associated with port and offshore industries and the marine environment, including measurements and marine investigations made by shipborne personnel.

Alignment surveys are made to plan, design, and construct highways, railroads, pipelines, and other linear projects. They normally begin at one control point and progress to another in the most direct manner permitted by field conditions.

Construction surveys provide line, grade, control elevations, horizontal positions, dimensions, and configurations for construction operations. They also secure essential data for computing construction pay quantities.

As-built surveys document the precise final locations and layouts of engineering works and record any design changes that may have been incorporated into the construction. These are particularly important when underground facilities are constructed, so their locations are accurately known for maintenance purposes, and so that unexpected damage to them can be avoided during later installation of other underground utilities.

Mine surveys are performed above and below ground to guide tunneling and other operations associated with mining. This classification also includes geophysical surveys for mineral and energy resource exploration.

Solar surveys map property boundaries, solar easements, obstructions according to sun angles, and meet other requirements of zoning boards and title insurance companies.

Optical tooling (also referred to as industrial surveying or optical alignment) is a method of making extremely accurate measurements for manufacturing processes where small tolerances are required.

Except for control surveys, most other types described are usually performed using plane-surveying procedures, but geodetic methods may be employed on the others if a survey covers an extensive area or requires extreme accuracy.

Ground, aerial, and satellite surveys are broad classifications sometimes used. Ground surveys utilize measurements made with ground-based equipment such as automatic levels and total station instruments. Aerial surveys are accomplished using either photogrammetry or remote sensing. Photogrammetry uses cameras that are carried usually in airplanes to obtain images, whereas remote sensing employs cameras and other types of sensors that can be transported in either aircraft or satellites. Procedures for analyzing and reducing the image data are described in Chapter 27. Aerial methods have been used in all the specialized types of surveys listed, except for optical tooling, and in this area terrestrial (ground-based) photographs are often used. Satellite surveys include the determination of ground locations from measurements made to satellites using GNSS receivers, or the use of satellite images for mapping and monitoring large regions of the Earth.
1.7 Surveying Safety

Surveyors (geomatics engineers) generally are involved in both field and office work. The fieldwork consists in making observations with various types of instruments to either (a) determine the relative locations of points or (b) to set out stakes in accordance with planned locations to guide building and construction operations. The office work involves (1) conducting research and analysis in preparing for surveys, (2) computing and processing the data obtained from field measurements, and (3) preparing maps, plats, charts, reports, and other documents according to client specifications. Sometimes the fieldwork must be performed in hostile or dangerous environments, and thus it is very important to be aware of the need to practice safety precautions.

Among the most dangerous of circumstances within which surveyors must sometimes work are job sites that are either on or near highways or railroads, or that cross such facilities. Job sites in construction zones where heavy machinery is operating are also hazardous, and the dangers are often exacerbated by poor hearing conditions from the excessive noise, and poor visibility caused by obstructions and dust, both of which are created by the construction activity. In these situations, whenever possible, the surveys should be removed from the danger areas through careful planning and/or the use of offset lines. If the work must be done in these hazardous areas, certain safety precautions should be followed. Safety vests of fluorescent yellow color should always be worn in these situations, and flagging materials of the same color can be attached to the surveying equipment to make it more visible. Depending on the circumstances, signs can be placed in advance of work areas to warn drivers of the presence of a survey party ahead, cones and/or barricades can be placed to deflect traffic around surveying activities, and flaggers can be assigned to warn drivers, or to slow or even stop them, if necessary. The Occupational Safety and Health Administration (OSHA), of the U.S. Department of Labor,\(^4\) has developed safety standards and guidelines that apply to the various conditions and situations that can be encountered.

Besides the hazards described above, depending on the location of the survey and the time of year, other dangers can also be encountered in conducting field surveys. These include problems related to weather such as frostbite and overexposure to the sun’s rays, which can cause skin cancers, sunburns, and heat stroke. To help prevent these problems, plenty of fluids should be drunk, large-brimmed hats and sunscreen can be worn, and on extremely hot days surveying should commence at dawn and terminate at midday or early afternoon. Outside work should not be done on extremely cold days, but if it is necessary, warm clothing should be worn and skin areas should not be exposed. Other hazards that can be encountered during field surveys include wild animals, poisonous snakes, bees, spiders, wood ticks, deer ticks (which can carry lyme disease), poison

\(^4\)The mission of OSHA is to save lives, prevent injuries, and protect the health of America’s workers. Its staff establishes protective standards, enforces those standards, and reaches out to employers and employees through technical assistance and consultation programs. For more information about OSHA and its safety standards, consult its website http://www.osha.gov.
Surveyors should be knowledgeable about the types of hazards that can be expected in any local area, and always be alert and on the lookout for them. To help prevent injury from these sources, protective boots and clothing should be worn and insect sprays can be used. Certain tools can also be dangerous, such as chain saws, axes, and machetes that are sometimes necessary for clearing lines of sight. These must always be handled with care. Also, care must be exercised in handling certain surveying instruments, like long-range poles and level rods, especially when working around overhead wires, to prevent accidental electrocutions.

Many other hazards, in addition to those cited above can be encountered when surveying in the field. Thus, it is essential that surveyors always exercise caution in their work, and know and follow accepted safety standards. In addition, a first-aid kit should always accompany a survey party in the field, and it should include all of the necessary antiseptics, ointments, bandage materials, and other equipment needed to render first aid for minor accidents. The survey party should also be equipped with cell phones for more serious situations, and telephone numbers to call in emergencies should be written down and readily accessible.

1.8 Land and Geographic Information Systems

Land Information Systems (LISs) and Geographic Information Systems (GISs) are areas of activity that have rapidly assumed positions of major prominence in surveying. These computer-based systems enable storing, integrating, manipulating, analyzing, and displaying virtually any type of spatially related information about our environment. LISs and GISs are being used at all levels of government, and by businesses, private industry, and public utilities to assist in management and decision making. Specific applications have occurred in many diverse areas and include natural resource management, facilities siting and management, land records modernization, demographic and market analysis, emergency response and fleet operations, infrastructure management, and regional, national, and global environmental monitoring. Data stored within LISs and GISs may be both natural and cultural, and be derived from new surveys, or from existing sources such as maps, charts, aerial and satellite photos, tabulated data and statistics, and other documents. However, in most situations, the needed information either does not exist, or it is unsatisfactory because of age, scale, or other reasons. Thus, new measurements, maps, photos, or other data must be obtained.

Specific types of information (also called themes or layers of information) needed for land and geographic information systems may include political boundaries, individual property ownership, population distribution, locations of natural resources, transportation networks, utilities, zoning, hydrography, soil types, land use, vegetation types, wetlands, and many, many more. An essential ingredient of all information entered into LIS and GIS databases is that it be spatially related, that is, located in a common geographic reference framework. Only then are the different layers of information physically relatable so they can be analyzed using computers to support decision making. This geographic
positional requirement will place a heavy demand upon surveyors (geomatics engineers) in the future, who will play key roles in designing, implementing, and managing these systems. Surveyors from virtually all of the specialized areas described in Section 1.6 will be involved in developing the needed databases. Their work will include establishing the required basic control framework; conducting boundary surveys and preparing legal descriptions of property ownership; performing topographic and hydrographic surveys by ground, aerial, and satellite methods; compiling and digitizing maps; and assembling a variety of other digital data files.

The last chapter of this book, Chapter 28, is devoted to the topic of land and geographic information systems. This subject seems appropriately covered at the end, after each of the other types of surveys needed to support these systems has been discussed.

1.9 FEDERAL SURVEYING AND MAPPING AGENCIES

Several agencies of the U.S. government perform extensive surveying and mapping. Three of the major ones are:

1. The National Geodetic Survey (NGS), formerly the Coast and Geodetic Survey, was originally organized to map the coast. Its activities have included control surveys to establish a network of reference monuments throughout the United States that serve as points for originating local surveys, preparation of nautical and aeronautical charts, photogrammetric surveys, tide and current studies, collection of magnetic data, gravimetric surveys, and worldwide control survey operations. The NGS now plays a major role in coordinating and assisting in activities related to upgrading the national network of reference control monuments, and to the development, storage, and dissemination of data used in modern LISs and GISs.

2. The U.S. Geological Survey (USGS), established in 1879, has as its mission the mapping of our nation and the survey of its resources. It provides a wide variety of maps, from topographic maps showing the geographic relief and natural and cultural features, to thematic maps that display the geology and water resources of the United States, to special maps of the moon and planets. The National Mapping Division of the USGS has the responsibility of producing topographic maps. It currently has nearly 70,000 different topographic maps available, and it distributes approximately 10 million copies annually. In recent years, the USGS has been engaged in a comprehensive program to develop a national digital cartographic database, which consists of map data in computer-readable formats.

3. The Bureau of Land Management (BLM), originally established in 1812 as the General Land Office, is responsible for managing the public lands. These lands, which total approximately 264 million acres and comprise about one eighth of the land in the United States, exist mostly in the western states and Alaska. The BLM is responsible for surveying the land and managing its natural resources, which include minerals, timber, fish and
wildlife, historical sites, and other natural heritage areas. Surveys of most public lands in the conterminous United States have been completed, but much work remains in Alaska.

In addition to these three federal agencies, units of the U.S. Army Corps of Engineers have made extensive surveys for emergency and military purposes. Some of these surveys provide data for engineering projects, such as those connected with flood control. Surveys of wide extent have also been conducted for special purposes by nearly 40 other federal agencies, including the Forest Service, National Park Service, International Boundary Commission, Bureau of Reclamation, Tennessee Valley Authority, Mississippi River Commission, U.S. Lake Survey, and Department of Transportation.

All states have a surveying and mapping section for purposes of generating topographic information upon which highways are planned and designed. Likewise, many counties and cities also have surveying programs, as have various utilities.

1.10 THE SURVEYING PROFESSION

The personal qualifications of surveyors are as important as their technical ability in dealing with the public. They must be patient and tactful with clients and their sometimes-hostile neighbors. Few people are aware of the painstaking research of old records required before fieldwork is started. Diligent, time-consuming effort may be needed to locate corners on nearby tracts for checking purposes as well as to find corners for the property in question.

Land or boundary surveying is classified as a learned profession because the modern practitioner needs a wide background of technical training and experience, and must exercise a considerable amount of independent judgment. Registered (licensed) professional surveyors must have a thorough knowledge of mathematics (particularly geometry, trigonometry, and calculus); competence with computers; a solid understanding of surveying theory, instruments, and methods in the areas of geodesy, photogrammetry, remote sensing, and cartography; some competence in economics (including office management), geography, geology, astronomy, and dendrology; and a familiarity with laws pertaining to land and boundaries. They should be knowledgeable in both field operations and office computations. Above all, they are governed by a professional code of ethics and are expected to charge professional-level fees for their work.

Permission to trespass on private property or to cut obstructing tree branches and shrubbery must be obtained through a proper approach. Such privileges are not conveyed by a surveying license or by employment in a state highway department or other agency (but a court order can be secured if a landowner objects to necessary surveys).

All 50 states, Guam, and Puerto Rico have registration laws for professional surveyors and engineers (as do the provinces of Canada). In general, a surveyor’s license is required to make property surveys, but not for construction, topographic, or route work, unless boundary corners are set.
To qualify for registration as either a professional land surveyor (PLS) or a professional engineer (PE), it is necessary to have an appropriate college degree, although some states allow relevant experience in lieu of formal education. In addition, candidates must acquire two or more years of mentored practical experience and must also pass a two-day comprehensive written examination. In most states, common national examinations covering fundamentals and principles and practice of land surveying are now used. However, usually two hours of the principles and practice exam are devoted to local legal customs and aspects. As a result, transfer of registration from one state to another has become easier.

Some states also require continuing education units (CEUs) for registration renewal, and many more are considering legislation that would add this requirement. Typical state laws require that a licensed land surveyor sign all plats, assume responsibility for any liability claims, and take an active part in the fieldwork.

1.11 PROFESSIONAL SURVEYING ORGANIZATIONS

There are many professional organizations in the United States and worldwide that serve the interests of surveying and mapping. Generally the objectives of these organizations are the advancement of knowledge in the field, encouragement of communication among surveyors, and upgrading of standards and ethics in surveying practice. The American Congress on Surveying and Mapping (ACSM) is the foremost professional surveying organization in the United States. Founded in 1941, ACSM regularly sponsors technical meetings at various locations throughout the country. These meetings bring together large numbers of surveyors for presentation of papers, discussion of new ideas and problems, and exhibition of the latest in surveying equipment. ACSM publishes a quarterly journal, *Surveying and Land Information Science*, and also regularly publishes its newsletter, *The ACSM Bulletin*.

As noted in the preceding section, all states require persons who perform boundary surveys to be licensed. Most states also have professional surveyor societies or organizations with full membership open only to licensed surveyors. These state societies are generally affiliated with ACSM and offer benefits similar to those of ACSM, except that they concentrate on matters of state and local concern.

The American Society for Photogrammetry and Remote Sensing (ASPRS) is a sister organization of ACSM. Like ACSM, this organization is also devoted to the advancement of the fields of measurement and mapping, although its major interests are directed toward the use of aerial and satellite imagery for achieving these goals. ASPRS has been cosponsor of many technical meetings with ACSM, and its monthly journal *Photogrammetric Engineering and Remote Sensing* regularly features surveying and mapping articles.

The Geomatics Division of the American Society of Civil Engineers (ASCE) is also dedicated to professional matters related to surveying and publishes quarterly the *Journal of Surveying Engineering*.

The Surveying and Geomatics Educators Society (SAGES) holds pedagogical conferences on the instruction of surveying/geomatics in higher educational institutions.
Another organization in the United States, the *Urban and Regional Information Systems Association* (URISA), also supports the profession of surveying and mapping. This organization uses information technology to solve problems in planning, public works, the environment, emergency services, and utilities. Its *URISA Journal* is published quarterly.

The *Canadian Institute of Geomatics* (CIG) is the foremost professional organization in Canada concerned with surveying. Its objectives parallel those of ACSM. This organization, formerly the *Canadian Institute of Surveying and Mapping* (CISM), disseminates information to its members through its *CIG Journal*.

The *International Federation of Surveyors* (FIG), founded in 1878, fosters the exchange of ideas and information among surveyors worldwide. The acronym FIG stems from its French name, *Fédération Internationale des Géomètres*. FIG membership consists of professional surveying organizations from many countries throughout the world. ACSM has been a member since 1959. FIG is organized into nine technical commissions, each concerned with a specialized area of surveying. The organization sponsors international conferences, usually at four-year intervals, and its commissions also hold periodic symposia where delegates gather for the presentation of papers on subjects of international interest.

1.12 SURVEYING ON THE INTERNET

The explosion of available information on the Internet has had a significant impact on the field of surveying (geomatics). The Internet enables the instantaneous electronic transfer of documents to any location where the necessary computer equipment is available. It brings resources directly into the office or home, where previously it was necessary to travel to obtain the information or wait for its transfer by mail. Software, educational materials, technical documents, standards, and much more useful information are available on the Internet. As an example of how surveyors can take advantage of the Internet, data from a *Continuously Operating Reference Station* (CORS) can be downloaded from the NGS website for use in a GNSS survey (see Section 14.3.5).

Many agencies and institutions maintain websites that provide data free of charge on the Internet. Additionally, some educational institutions now place credit and noncredit courses on the Internet so that distance education can be more easily achieved. With a web browser, it is possible to research almost any topic from a convenient location, and names, addresses, and phone numbers of goods or services providers in a specific area can be identified. As an example, if it was desired to find companies offering mapping services in a certain region, a web search engine could be used to locate web pages that mention this service. Such a search may result in over a million pages if a very general term such as “mapping services” is used to search, but using more specific terms can narrow the search.

Unfortunately the addresses of particular pages and entire sites, given by their *Universal Resource Locators* (URLs), tend to change with time. However, at the risk of publishing URLs that may no longer be correct, a short list of important websites related to surveying is presented in Table 1.1.
TABLE 1.1

<table>
<thead>
<tr>
<th>Universal Resource Locator</th>
<th>Owner of Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.ngs.noaa.gov</td>
<td>National Geodetic Survey</td>
</tr>
<tr>
<td>http://www.blm.gov</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>http://www.navcen.uscg.mil</td>
<td>U.S. Coast Guard Navigation Center</td>
</tr>
<tr>
<td>http://www.usno.navy.mil</td>
<td>U.S. Naval Observatory</td>
</tr>
<tr>
<td>http://www.acsm.net</td>
<td>American Congress on Surveying and Mapping</td>
</tr>
<tr>
<td>http://www.asprs.org</td>
<td>American Society for Photogrammetry and Remote Sensing</td>
</tr>
<tr>
<td>http://www.asce.org</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>http://www.pearsonhighered.com/ghilani</td>
<td>Companion website for this book</td>
</tr>
</tbody>
</table>

1.13 Future Challenges in Surveying

Surveying is currently in the midst of a revolution in the way data are measured, recorded, stored, retrieved, and shared. This is in large part because of developments in computers and computer-related technologies. Concurrent with technological advancements, society continues to demand more data, with increasingly higher standards of accuracy, than ever before. Consequently, in a few years the demands on surveying engineers (geomatics engineers) will likely be very different from what they are now.

In the future, the National Spatial Reference System, a network of horizontal and vertical control points, must be maintained and supplemented to meet requirements of increasingly higher-order surveys. New topographic maps with larger scales as well as digital map products are necessary for better planning. Existing maps of our rapidly expanding urban areas need revision and updating to reflect changes, and more and better map products are needed of the older parts of our cities to support urban renewal programs and infrastructure maintenance and modernization. Large quantities of data will be needed to plan and design new rapid-transit systems to connect our major cities, and surveyors will face new challenges in meeting the precise standards required in staking alignments and grades for these systems.

In the future, assessment of environmental impacts of proposed construction projects will call for more and better maps and other data. GISs and LISs that contain a variety of land-related data such as ownership, location, acreage, soil types, land uses, and natural resources must be designed, developed, and maintained. Cadastral surveys of the yet unsurveyed public lands are essential. Monuments set years ago by the original surveyors have to be recovered and re-monumented for preservation of property boundaries. Appropriate surveys with
very demanding accuracies will be necessary to position drilling rigs as mineral and oil explorations press further offshore. Other future challenges include making precise deformation surveys for monitoring existing structures such as dams, bridges, and skyscrapers to detect imperceptible movements that could be precursors to catastrophes caused by their failure. Timely measurements and maps of the effects of natural disasters such as earthquakes, floods, and hurricanes will be needed so that effective relief and assistance efforts can be planned and implemented. In the space program, the desire for maps of neighboring planets will continue. And we must increase our activities in measuring and monitoring natural and human-caused global changes (glacial growth and retreat, volcanic activity, large-scale deforestation, and so on) that can potentially affect our land, water, atmosphere, energy supply, and even our climate.

These and other opportunities offer professionally rewarding indoor or outdoor (or both) careers for numerous people with suitable training in the various branches of surveying.

PROBLEMS

NOTE: Answers for some of these problems, and some in later chapters, can be obtained by consulting the bibliographies, later chapters, websites, or professional surveyors.

1.1 Develop your personal definition for the practice of surveying.
1.2 Explain the difference between geodetic and plane surveys.
1.3 Describe some surveying applications in:
 (a) Archeology (b) Mining (c) Agriculture
1.4 List 10 uses for surveying other than property and construction surveying.
1.5 Why is it important to make accurate surveys of underground utilities?
1.6 Discuss the uses for topographic surveys.
1.7 What are hydrographic surveys, and why are they important?
1.8 Name and briefly describe three different surveying instruments used by early Roman engineers.
1.9 Briefly explain the procedure used by Eratosthenes in determining the Earth’s circumference.
1.10 Describe the steps a land surveyor would need to do when performing a boundary survey.
1.11 Do laws in your state specify the accuracy required for surveys made to lay out a subdivision? If so, what limits are set?
1.12 What organizations in your state will furnish maps and reference data to surveyors and engineers?
1.13 List the legal requirements for registration as a land surveyor in your state.
1.14 Briefly describe the European Galileo system and discuss its similarities and differences with GPS.
1.15 List at least five nonsurveying uses for GPS.
1.16 Explain how aerial photographs and satellite images can be valuable in surveying.
1.17 Search the Internet and define a VLBI station. Discuss why these stations are important to the surveying community.
1.18 Describe how a GIS can be used in flood emergency planning.
1.19 Visit one of the surveying websites listed in Table 1.1, and write a brief summary of its contents. Briefly explain the value of the available information to surveyors.
1.20 Read one of the articles cited in the bibliography for this chapter, or another of your choosing, that describes an application where GPS was used. Write a brief summary of the article.

1.21 Same as Problem 1.20, except the article should be on safety as related to surveying.

BIBLIOGRAPHY

This page intentionally left blank