### LCC Lawsuit Summary

Tuesday, August 26, 2025 2:37 PM

Here's a summary of the lawsuits filed against UDOT (Utah Department of Transportation) concerning the proposed gondola project in Little Cottonwood Canyon:

#### 1. Friends of Alta / Canyon Guard Coalition

Date Filed: December 4-5, 2023

Plaintiffs: Friends of Alta and allied individuals/organizations under the Canyon Guard

Coalition

Allegations:

UDOT failed to properly scope or conduct an Environmental Impact Statement (EIS) under NEPA.

They didn't evaluate reasonable alternatives, ignored public comments, failed to assess environmental effects (viewsheds, wildlife, watershed, etc.), didn't coordinate adequately with the U.S. Forest Service, and may have violated the Transportation Act of 1966.

Seeking to invalidate the Final EIS and Record of Decision (ROD), and halt construction until full compliance.

PR Newswire
The Salt Lake Tribune
FOX 13 News Utah (KSTU)

### 2. Salt Lake City, Sandy City & Metropolitan Water District (MWDSLS)

Date Filed: December 11-14, 2023

Plaintiffs: Salt Lake City, Sandy City, and the MWDSLS

Allegations:

UDOT (and partners like the Forest Service and FHWA) inadequately assessed impacts to drinking water resources and watershed integrity.

Violations alleged under NEPA, the Wilderness Act, Transportation Act, and Administrative Procedures Act.

Seeking a supplemental EIS and new ROD. The Salt Lake Tribune

### LCC Lawsuit Summary (cont.)

Tuesday, August 26, 2025

2:39 PM

#### 3. Save Our Canyons

Date Filed: December 11, 2023

Allegations:

UDOT's process was "flawed and arbitrary," failing to consider reasonable alternatives or broader environmental impacts.

The Forest Service allegedly didn't account for impacts to nearby wilderness areas.

Seeks to set aside the ROD and EIS and prevent further progress until compliance is met. The Salt Lake Tribune
Utah News Dispatch

#### 4. Granite Oaks Homeowners Association (HOA)

Date Filed: March 2025

Allegations:

UDOT's purchase of a private residential lot (~\$5 million) to build access for the gondola's base station violated property rights and misused public funds.

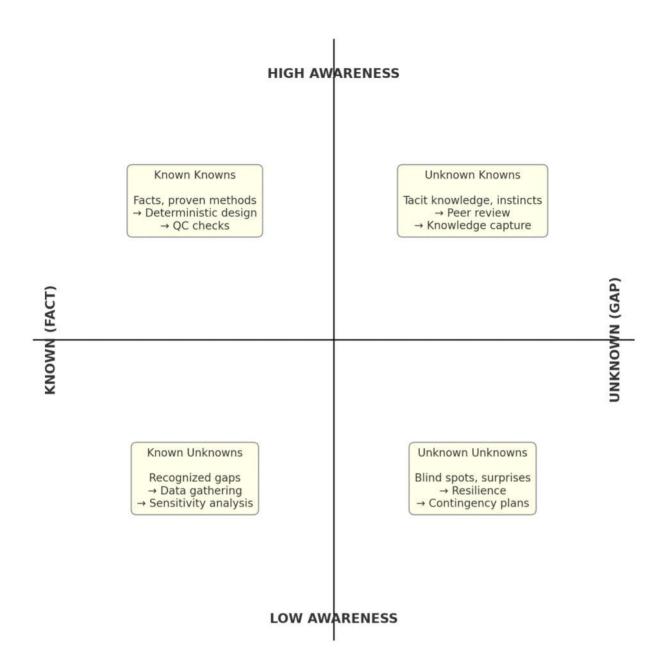
Challenges the legality of that land acquisition and the use of taxpayer money. LCC Friends

+1

#### **Consolidation of Lawsuits**

In early 2024, attorneys for these groups jointly requested that the three principal lawsuits—Friends of Alta/Canyon Guard, Save Our Canyons, and the Salt Lake/Sandy/MWDSLS suit—be consolidated into a single case, arguing that they share common legal issues and facts. UDOT does not oppose this move.

FOX 13 News Utah (KSTU)


**Utah News Dispatch** 

#### **Current Status & Impacts**

The combined litigation has entered the discovery phase, with UDOT having produced hundreds of thousands of pages to plaintiffs. There are ongoing disputes about documentation completeness.

# Risk Management - What Do We Know? (cont.)

Tuesday, August 26, 2025 1:21 PM



### Risk Management - Engineering Actions (cont.)

Tuesday, August 26, 2025 1:21 PM

#### **Knowns and Unknowns in Risk Analysis**

- 1. You know what you know (Known knowns)
  - **Description:** Established facts, validated measurements, proven methods.
  - Engineering action:
    - Use deterministic models.
    - Apply standard codes/specifications.
    - Document assumptions and data sources.
  - Risk posture: Low uncertainty. Mostly needs quality control.

#### 2. You know what you don't know (Known unknowns)

- **Description:** Recognized data gaps, missing tests, unverified assumptions.
- Engineering action:
  - Gather more data (field testing, lab experiments).
  - Use sensitivity analysis to see how results change with assumed values.
  - Apply probabilistic methods to quantify uncertainty.
- **Risk posture:** Manageable with budget/time allocation for investigation.

#### 3. You don't know what you don't know (Unknown unknowns)

- **Description:** Unanticipated issues, unforeseen failure modes, new phenomena.
- Engineering action:
  - Build resilience into designs (redundancy, safety factors).
  - o Use scenario planning for extreme but plausible events.
  - o Monitor performance and feedback loops after construction.
- **Risk posture:** High uncertainty—requires adaptability and contingency planning.

### 4. You don't know what you know (Tacit knowledge)

- **Description:** Experience-based intuition not yet codified or documented.
- Engineering action:
  - Encourage peer review and mentoring to surface implicit knowledge.
  - o Conduct after-action reviews to turn intuition into explicit guidance.
- **Risk posture:** Missed opportunities if left untapped; can strengthen design if shared.

## Risk Management - What Do We Know

Thursday, August 14, 2025 1:21 PM

In the context of unknowns, what does the classification of (1) you know what you know, (2) you know what you don't know and (3) you don't know what you don't know?

#### **ChatGPT said:**

That classification comes from a framework often called **"knowns and unknowns"**, popularized by U.S. Secretary of Defense Donald Rumsfeld in 2002, but actually rooted in risk management and epistemology.

Here's what each category means in the context of **unknowns**:

#### 1. You know what you know (Known knowns)

- These are facts, skills, or situations you are aware of and understand.
- Example: A structural engineer knows the equations for calculating beam bending stress.
- Risk implication: These are the most predictable—there's high confidence in this knowledge.

#### 2. You know what you don't know (Known unknowns)

- These are gaps you are aware of; you recognize you lack specific information or ability.
- Example: You know you haven't measured the soil's shear strength yet, but you know it needs to be measured.
- Risk implication: These can often be planned for or researched to reduce uncertainty.

#### 3. You don't know what you don't know (Unknown unknowns)

- These are blind spots—things you're unaware of and thus don't realize you should be considering.
- Example: Before a new material is tested in the field, you might not anticipate a rare environmental reaction that causes unexpected failure.
- Risk implication: These are the most dangerous, because you can't plan for them until they emerge. Managing them requires resilience, flexibility, and contingency planning.

If we add a **fourth category** (which some researchers do), we get:

### 4. You don't know what you know (Tacit knowledge)

- Things you understand instinctively or have learned but haven't consciously articulated.
- Example: An experienced crane operator might "just know" when a load is unstable, without being able to explain the physics on the spot.

© Steven F. Bartlett 2025

### Risk Management - Principles

Tuesday, August 26, 2025

#### 1. Identify Risks Early and Continuously

- Systematically recognize potential hazards, uncertainties, and vulnerabilities at every project phase—planning, design, construction, and operation.
- Sources may include geotechnical conditions, environmental impacts, structural failures, regulatory changes, and stakeholder issues.

#### 2. Classify and Prioritize Risks

- Categorize risks by probability (likelihood of occurrence) and consequence (impact on safety, cost, schedule, environment).
- Use risk matrices or qualitative/quantitative scoring to focus attention on high-priority risks.

#### 3. Quantify Uncertainty

- Apply both deterministic and probabilistic approaches:
- Deterministic: Uses single-point safety factors, common in code-based design.
- Probabilistic: Accounts for variability in loads, material properties, and external hazards (e.g., flood frequency analysis).

Tools: Monte Carlo simulation, reliability analysis, and sensitivity testing.

#### 4. Apply the ALARP Principle (As Low As Reasonably Practicable)

- Reduce risks to the lowest level feasible considering technical, financial, and operational constraints.
- For high-consequence hazards (e.g., dam failure, bridge collapse), residual risk must be demonstrably tolerable.

#### 5. Incorporate Redundancy and Resilience

- Redundancy: Design alternate load paths and fail-safe modes to prevent catastrophic collapse.
- Resilience: Ensure infrastructure can withstand, adapt, and recover quickly from extreme events (earthquakes, floods, hurricanes).

## Risk Management - Principles (cont.)

Tuesday, August 26, 2025 1:21 PM

#### 6. Use Iterative Monitoring and Feedback

- Implement inspection, instrumentation, and performance monitoring systems.
- Update risk assessments as conditions, usage, or environmental factors change over the life cycle.

#### 7. Engage Stakeholders

- Communicate risks transparently with clients, contractors, regulators, and the public.
- Align risk acceptance criteria with societal expectations and regulatory requirements.

#### 8. Integrate Risk Management into Decision-Making

- Make risk evaluation a core part of feasibility studies, design reviews, and construction planning—not an afterthought.
- Link risk decisions to cost—benefit analysis, schedule planning, and sustainability goals.

#### 9. Learn from Past Projects

- Maintain a knowledge base of failures, near misses, and best practices.
- Use after-action reviews to convert tacit field knowledge into explicit design and management guidelines.

# Risk Management - In a Project Timeline

Tuesday, August 26, 2025 1:21 PM

| Project Phase            | Key Risk Management Actions                                                           | Examples in Civil Engineering                                 |
|--------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1. Concept & Feasibility | - Identify strategic and external risks early.                                        | - Feasibility study for a bridge includes floodplain mapping. |
|                          | - Conduct high-level hazard mapping and preliminary geotechnical review.              | - Early stakeholder meetings to address right-of-way issues.  |
|                          | - Screen for regulatory, environmental, and community constraints.                    | - Preliminary seismic hazard assessment for a high-rise.      |
|                          | - Estimate cost & schedule contingencies for uncertainty.                             |                                                               |
| 2. Design Development    | - Apply both deterministic (code-based) and probabilistic (reliability) analyses.     | - Probabilistic slope stability analysis for an embankment.   |
|                          | - Perform sensitivity analysis for critical design parameters.                        | - Redundant support cables for a suspension bridge.           |
|                          | - Integrate redundancy, robustness, and resilience into designs.                      | - Stormwater system sized for climate change projections.     |
|                          | - Document risk-based design decisions for review.                                    |                                                               |
| 3. Procurement &         | - Evaluate contractor risk profiles.                                                  | - Contract clauses for geotechnical uncertainty in tunneling. |
| Construction Planning    | - Include risk allocation clauses in contracts.                                       | - Staged excavation to reduce landslide risk.                 |
|                          | - Plan construction sequencing to minimize hazard exposure.                           | - Contractor safety training before high-risk tasks.          |
|                          | - Incorporate safety management systems.                                              |                                                               |
| 4. Construction          | - Monitor site conditions and adapt plans as needed.                                  | - Settlement monitoring for pile driving.                     |
|                          | - Use real-time instrumentation for critical structures.                              | - Temporary shoring during excavation.                        |
|                          | - Maintain contingency resources for delays or hazards.                               | - Emergency flood protection during bridge pier work.         |
|                          | - Track safety metrics continuously.                                                  |                                                               |
| 5. Commissioning &       | - Verify performance against design assumptions.                                      | - Load testing of a new highway overpass.                     |
| Handover                 | - Conduct independent safety audits.                                                  | - Seismic instrumentation installed before opening.           |
|                          | - Update as-built documentation with risk notes.                                      |                                                               |
|                          | - Train operators on emergency and maintenance procedures.                            |                                                               |
| 6. Operation &           | - Implement inspection and preventive maintenance schedules.                          | - Annual dam safety inspections.                              |
| Maintenance              | - Update hazard models as site conditions evolve.                                     | - Pavement management system for highway network.             |
|                          | - Track asset performance for early-warning signs.                                    | - Updating flood risk maps after major storms.                |
|                          | - Incorporate lessons learned into future designs.                                    |                                                               |
| 7. Decommissioning or    | - Plan for end-of-life hazards (structural instability, environmental contamination). | - Controlled implosion of a high-rise in a dense urban area.  |
| Replacement              | - Engage stakeholders for classes impacts.                                            | - Hazardous materials removal during bridge demolition.       |
|                          | - Manage demolition and disونعزعا risks safely.                                       |                                                               |

### **ITS Transportation System**

Friday, August 8, 2025 4:07 PM

Characteristics of intelligent smart transportation systems

Intelligent Smart Transportation Systems (ITS) leverage technology to improve various aspects of transportation, including safety, efficiency, and sustainability

- . Here are some key characteristics:
- Real-time Data Collection and Analysis: ITS systems utilize sensors, cameras, GPS devices, and other data sources to gather real-time information about traffic flow, congestion, vehicle location, weather conditions, and road incidents. This data is then analyzed using advanced algorithms and machine learning to provide actionable insights.
- Intelligent Traffic Management: ITS enables the dynamic management of traffic signals and routes based on real-time traffic conditions. For example, smart traffic signals can adapt to traffic volumes, reducing delays at intersections.
- Enhanced Safety: ITS solutions improve road safety through features like automatic incident detection, collision avoidance systems, and warning systems. Advanced driver assistance systems (ADAS) further enhance driver safety with features such as adaptive cruise control and lane departure warnings.
- Improved Efficiency and Reduced Congestion: By optimizing traffic flow, suggesting alternative routes, and managing public transportation, ITS significantly reduces congestion and travel times. Studies have shown that ITS technologies can cut travel times by a significant margin.
- Environmental Sustainability: ITS promotes eco-friendly transportation practices by optimizing routes and reducing idle time, thereby lowering fuel consumption and vehicle emissions. ITS encourages the use of public transport, ridesharing, and alternative modes of transportation, further contributing to environmental goals.
- Improved Mobility and Accessibility: ITS solutions aim to provide greater mobility and accessibility for all individuals, including the elderly, disabled, and those with limited mobility. Real-time information, integrated public transportation systems, and accessible infrastructure contribute to more efficient and independent navigation within cities.
- Connectivity and Communication: ITS relies on robust communication technologies like Vehicleto-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything (V2X) communication, allowing for the real-time exchange of data between vehicles, infrastructure, and other relevant entities.

In summary, ITS solutions are characterized by their ability to harness advanced technologies to create a more efficient, safe, sustainable, and accessible transportation system for everyone.

# ITS Transportation System (cont.)

Friday, August 8, 2025 4:07 PM

#### **UDOT's Intelligent Transportation System**

Utah Department of Transportation



#### **Smart Parking for Smart Cities**



## Engineering Reports - Scope of Work

Tuesday, September 2, 2025 11:06 AM

#### 1. Project Overview / Introduction

- Purpose and objectives of the project
- Background or context
- Project location and general description (e.g., highway expansion, bridge design, drainage system)
- Stakeholders involved (e.g., client, consultants, authorities)

#### 2. Project Scope

- Detailed description of what is included and excluded
- Key phases (e.g., feasibility, preliminary design, detailed design, permitting)
- Types of infrastructure involved (e.g., roads, utilities, stormwater systems, grading)

#### 3. Scope of Services

Breakdown of engineering services, typically structured as:

- a. Preliminary / Conceptual Design
- Data collection
- Site visits and surveys
- Feasibility studies
- Concept drawing

#### 4. Schedule of Task, Deliverables and Milestones

### Design Engineering Reports

Friday, August 8, 2025

11:06 AM

A Civil Engineering report focusing on transportation systems typically follows a standard structure, with the main body presenting a problem, analyzing it, and proposing solutions.

Key elements you would expect to see in such a report include:

- Executive Summary: A concise overview of the report's purpose, key findings, and recommendations.
- Introduction: Sets the stage by outlining the project's background, objectives, and scope.
- Project Description: Details the existing infrastructure and proposed improvements, including factors like roadway features, <u>pedestrian and bicycle accommodations</u>, and any special designations of the area.
- Methodology: Explains the data collection and analysis methods used, such as traffic counts, surveys, and crash data analysis. This section should demonstrate thorough research and clear protocols.
- Existing Conditions: Assesses the current state of the transportation network, including traffic volumes, speeds, and safety. This may involve evaluating <u>Level of Service (LOS)</u> and Volume-to-Capacity (V/C) ratios for intersections and road segments, and reviewing crash data and history.
- Future Conditions: Analyzes projected traffic conditions with and without the proposed development or project. This might involve developing and utilizing traffic models and simulations.
- Traffic Impact Assessment: Evaluates the potential traffic impacts of the proposed changes, identifying areas of concern and potential deficiencies.
- Environmental Impact Assessment: Examines the project's environmental consequences, such as impacts on air and water quality, noise levels, and wildlife habitats. Potential mitigation measures should also be discussed.

© Steven F. Bartlett 2025

### Design Engineering Reports (cont.)

Friday, August 8, 2025 11:06 AM

• Environmental Impact Assessment: Examines the project's environmental consequences, such as impacts on air and water quality, noise levels, and wildlife habitats. Potential mitigation measures should also be discussed.

- Conclusion: Summarizes the report's findings, highlighting the significance of the results and addressing the initial objectives.
- Recommendations: Outlines specific, concrete actions to be taken based on the findings and conclusions. These might include design modifications, operational improvements, or mitigation strategies.
- References and Appendices: Lists all referenced literature and includes supporting documentation, such as raw data, maps, figures, and calculations.

These reports are crucial for tracking project progress, estimating material quantities, ensuring compliance with standards, and informing decision-making throughout the project lifecycle.