Protection of Lifelines and Buried Structures Using EPS Geofoam GeoShanghai 2014

Steven F. Bartlett, Ph.D. P.E Associate Professor bartlett@civil.utah.edu

Topics

- Introduction to EPS
- Seismic Hazards
- Pipeline Protection Strategies
- Development of EPS Light-weight Cover
- Test Results
- Field Application

Beginnings of Geofoam

Common Civil Engineering Applications

Light-weight embankment

Light-weight backfill

Slope stabilization

Green Roofs and Landscaping

Geofoam Advantages

Light weight material

- Reduces static and seismic loads to walls, buried structures
- Improves slope stability (static & dynamic)
- Reduces consolidation settlement on soft ground

Controlled Compression (Compression Inclusion)

- Can undergo elastic and plastic deformation but maintains general shape
- Reduces load to buried structures by compression

Geofoam Properties

ASTM D6817 Physical Property Requirements of EPS Geofoam

Туре	EPS12	EPS15	EPS19	EPS22	EPS29	EPS39	EPS46
Density, min., kg/m³(lb/ft³)	11.2 (0.70)	14.4 (0.90)	18.4 (1.15)	21.6 (1.35)	28.8 (1.80)	38.4 (2.40)	45.7 (2.85)
Compressive Resistance, min., kPa (psi) at 1 %	15 (2.2)	25 (3.6)	40 (5.8)	50 (7.3)	75 (10.9)	103 (15.0)	128 (18.6)
Compressive Resistance, min., kPa (psi) at 5 %	35 (5.1)	55 (8.0)	90 (13.1)	115 (16.7)	170 (24.7)	241 (35.0)	300 (43.5)
Compressive Resistance, min., kPa (psi) at 10 % ^A	40 (5.8)	70 (10.2)	110 (16.0)	135 (19.6)	200 (29.0)	276 (40.0)	345 (50.0)
Flexural Strength, min., kPa (psi)	69 (10.0)	172 (25.0)	207 (30.0)	240 (35.0)	345 (50.0)	414 (60.0)	517 (75.0)
Oxygen index, min., volume %	24.0	24.0	24.0	24.0	24.0	24.0	24.0

General Applications of EPS Geofoam

2.1	Road construction over poor soils
2.2	Road widening
2.3	Bridge abutment
2.4	Bridge underfill
2.5	Culverts, pipelines & buried structures
2.6	Compensating foundation
2.7	Rail embankment
2.8	Landscaping & vegetative green roofs
2.9	Retaining and buried wall backfill
2.10	Slope stabilization
2.11	Stadium & theater seating
2.12	Levees
2.13	Airport runway/taxiway
2.14	Foundations for lightweight structures

Pipelines (Light-weight Cover Over Normal Faults)

Lightweight-Cover System (X-sectional View)

Geofoam Monotonic and Cyclic Testing

GeoCompTM Cyclic Triaxial Device

Geofoam Properties Under Monotonic Loading

Full-Scale Compression Test

Block Compression Tests

Geofoam Large Strain Behavior

Typical Stress – Strain Curve for EPS (Lingwall and Bartlett, 2010)

Geofoam Pipe Interaction

Topics

- Introduction to EPS
- Seismic Hazards
- Pipeline Protection Strategies
- Development of EPS Light-weight Cover
- Test Results
- Field Application

Sources of Permanent Ground Deformation

- Tectonic Faulting
- Subsidence and Settlement
- Landsliding and Other Types of Mass Movement
- Liquefaction and Lateral Spread

Light-weight cover system can offer a potential solution to many of these types of ground displacement, but more development is need.

Faults with Vertical Movement (Dip-Slip Faults)

Salt Lake City, Index Map

Seismicity of Intermountain Seismic Belt

Salt Lake City

Wasatch Fault – Salt Lake City Segment

Wasatch Fault at Little Cottonwood Canyon

Normal Fault Offset – Typical Examples

Fault-Induced Pipeline Rupture

Topics

- Introduction to EPS
- Seismic Hazards
- Pipeline Protection Strategies
- Development of EPS Light-weight Cover
- Test Results
- Field Application

Pipeline Protection Strategies

Mechanical Devices

- Expensive
- Cannot easily remediate existing problem
- Proprietary
- Tend to induce extra axial forces on pipeline

http://www.wateronline.com/product.mvc

Pipelines (Protection for Strike Slip Faults)

Alaskan Pipeline – Strike Slip Fault

Pipelines (Protection for Normal and Reverse Faults)

Shallow Burial – Normal Faulting

Topics

- Introduction to EPS
- Seismic Hazards
- Pipeline Protection Strategies
- Development of EPS Light-weight Cover
- Test Results
- Field Application

Pipelines (Light-weight Cover Over Normal Faults)

Lightweight-Cover System (X-sectional View)

Pipelines (Light-weight Cover Over Normal Faults)

Displacement Vectors During Failure

Development of Soil Springs for Numerical Modeling

Pipelines (Light-weight Cover Over Normal Faults)

Bending Moments in Pipe from 2 m offset

Topics

- Introduction to EPS
- Seismic Hazards
- Pipeline Protection Strategies
- Development of EPS Light-weight Cover
- Test Results
- Field Application

Construction of Uplift Tests

Lift-up Test Layout

Vertical Uplift Tests

Force-Displacement Curves from Uplift Tests

Topics

- Introduction to EPS
- Seismic Hazards
- Pipeline Protection Strategies
- Development of EPS Light-weight Cover
- Test Results
- Field Application

Pipelines (Light-weight Cover Over Faults)

Pipelines (Light-weight Cover Over Faults

Results of Numerical Modeling of Cover with Asphalt

Horizontal Displacement from Strike Slipe Faults

Horizontal Offset from Permanent Ground Displacement

Horizontal Offset from Permanent Ground Displacement

Horizontal Offset from Permanent Ground Displacement

Conclusions

- Light weight EPS cover systems can be effective in preventing rupture of high strength steel-pipelines undergoing vertical offset from permanent ground displacement.
- The EPS light-weight cover strategy presumes that surface damage caused by uplift of the cover is acceptable.
- Light weight cover systems can also be used to accommodate horizontal movement.

Sponsors

Questar Gas Corporation, Salt Lake City, Utah

Bechtel Corporation, San Francisco, California

For More Information

http://www.civil.utah.edu/~bartlett/Geofoam/

EPS Geofoam Research Consortium

