Evaluation and Performance of Lightweight Material Supporting Rail Systems

Steven F. Bartlett, Ph.D., P.E. University of Utah

Introduction – Lightweight Materials Advantages

• Low inertial forces

- small m (mass) produces small F_i
- High strength to weight ratio
- Energy Loss
 - Compressible Increased Damping
- Manufactured materials with low variability in mechanical properties

Material Properties – EPS and Cellular Concrete

EPS

- Weight
 - 0.7 to 2.85 pcf
- Compressive Strength
 - 5 to 60 psi (10% strain)
 - 2.2 to 18.6 psi (1% strain)
 - Elastic Range
- Young's Modulus
 - 220 to 1,860 psi

LCC

- Weight
 - 20 to 45 pcf
 - Typical constructed values
- Compressive Strength
 - 50 to 400 psi
- Young's Modulus
 - 220 to 275 ksi

Grade Separation for Union Pacific Mainline

Design Considerations – Spectral Accelerations

- Level 1 The embankment structure should remain intact with no permanent deformation (i.e. the seismic loads must remain within the elastic range of the stress-strain curve of the embankment).
- 2. Level 2 The embankment structure should be repairable, with only minor permanent deformation.
- 3. Level 3 The embankment structure must not collapse after experiencing permanent deformations.

AREMA (2010)

Typical Cross Section

(1) 8.5-foot wide concrete ties with ballasted track section [12 inches ballast/18 inches sub ballast],

(2) 3-foot thick upper layer of Class IV cellular concrete,

(3) variable thickness of Class II cellular concrete,

(4) 2.5-foot thick Class IV layer of cellular concrete with a 4-foot deep shear key embedded in the foundation soils (at higher embankment sections),

(5) vibro-replacement stone columns approximately 15 ft deep in the foundation soils.

Geofoam Rail Embankments – Conceptual Drawing

Design Considerations – Design Time Histories

Figure 5. Comparison of spectrally-matched time histories with Level 3 target spectrum.

Design Considerations – Numerical Model

Design Considerations – Colton Crossing Summary

- Evaluations suggest that the LDCC embankment remained in the elastic range for AREMA Level 1 and 2 earthquakes and will not exceed the peak shear strength under any of the AREMA Level 1, 2 and 3 earthquakes.
- Reinforcement of the LDCC mass is recommended to prevent the potential for minor cracking resulting from excitation.
- Interlayer sliding and overstressing of LCC due to sway did not occur.
- Estimated basal sliding of the tallest section of the embankment is expected to range from 1 to 4 inches at the Level 2 earthquake, and from 4 to 7 inches at the Level 3 earthquake.
- The presence of basal shear key was integral to limit basal sliding for the AREMA Level 3 event. Higher strength LCC is also recommended near the top and base of the embankment.
- Rocking mode is not significant and any minor overstressing from such should be addressed by higher strength LCC in basal layer.

Rail Systems on EPS Geofoam – NSB Rail Line – Skien, Norway

of UTAH

34.8 kips / axle

Light Rail Systems on EPS Geofoam

IMAGINE

Light rail EPS Embankment Construction in Netherlands – Milan Duskov

Overview

- Case Histories of Rail on EPS
- Numerical Modeling of Case Histories
- Deflection Monitoring
 - Commuter Rail
 - Light Rail
- Subsequent Ballast Testing

Light Rail Embankments – Roper Yard – Salt Lake City

THE

UNIVERSITY of UTAH

UTA –Light Rail – Salt Lake City, Utah

Light Rail Embankments – Roper Yard – Salt Lake City

UTA – Light Rail – Salt Lake City, Utah

Light Rail Embankments – Roper Yard – Salt Lake City

IMAGINE

UTA – Light Rail – Salt Lake City, Utah

Commuter Rail Embankments – Draper, Utah

Front Runner – UTA – Corner Canyon – Draper Utah

Modeling of Commuter Rail Embankments – Draper, Utah

Front Runner – UTA – Corner Canyon – Draper Utah

Vertical Deflections (mm) measured from train loads (Frydenlund et al., 1987).

Stationing	East	Rail	West Rail	
	Bolt in concrete slab	Nail in Sleeper	Bolt in concrete slab	Nail in sleeper
185.411,0		-3		-3
185.416,0		-1		-4
185.421,5		-4		-5
185.424,5	0	-4	-3	-6
185.427,5	0	-4	-2	-5
185.437,0	-1	-5	-3	-7
185.443,0	-1	-2	-3	-5
185.446,5	-1	-3	-2?	-1
185.448,5		-2		-3
185.450,5 Bridge End	Ο	-1	0	-3
185.453,5 Bridge Axis	0	-1	0	-2

UNIVERSITY OF UTAH

IMAGINE

UNIVERSITY OF UTAH

3D model with symmetry

	Е		Note	
Description	MPa	ν		
Rail	210000	0.3	78 mm wide, 153 mm deep	
Sleeper (3D/2D)	31000/13000	0.3	242 mm wide, 200 mm deep	
Ballast	130	0.3		
Concrete Slab	40000	0.2		
EPS29	7.5	0.103		
Drainage Layer	300	0.3		
Fill	300	0.3		
Sand (Natural Ground)	100	0.3		

IMAGINE

THE UNIVERSITY OF UTAH

2.3 mm of deflection predicted by numerical model

Range of measurements was 2 to 3 mm under static loading by NSB personnel

Modeling of Rail Systems on EPS Geofoam – Commuter Rail Corner Canyon

Modeling - Typical Section for Commuter Rail

of UTAH

THE

Modeling of Rail Systems on EPS Geofoam – Commuter Rail

	Е		Geometry	
Description	MPa	ν		
Rail	210000	0.3	78 mm wide, 153 mm deep	
Sleeper (3D/2D)	31000/11600	0.3	242 mm wide, 200 mm deep	
Ballast	310	0.3	308.8 mm thick	
Sub-ballast	130	0.49	203.2 mm thick	
Structural Fill	400	0.3	914.4 mm thick	
LDS	30000	0.18	203.2 mm thick	
EPS 39	10.3	0.103	top layer	
EPS 29	7.5	0.103	second to fifth layer	
EPS 22	5	0.103	sixth to bottom layer	
Foundation Soil	174	0.4	20 m thick	

Modeling of Rail Systems on EPS Geofoam – Commuter Rail

Modeling of Rail Systems on EPS Geofoam – Commuter Rail

6 mm of vertical displacement predicted by model 4 mm (max) measured by accelerometers

Overview

- Case Histories of Rail on EPS
- Numerical Modeling of Case Histories
- Deflection Monitoring
 - Commuter Rail
 - Light Rail
- Subsequent Ballast Testing

Deflection Monitoring Locations – Corner Canyon

Locomotive Loading – Commuter Rail

LIVE LOAD

Car Loading – Commuter Rail

Deployment of Accelerometers – 3 Component

EPS Embankment Accelerations – Commuter Rail

EPS Embankment Deflections – Effects of Upper Frequency Bandpass Filtering on Integration

EPS Embankment Deflections – Commuter Rail

ΤН

UNIVERSITY of UTAH

Earthen Embankment Deflections – Commuter Rail

IMAGINE THE UNIVERSITY OF UTAH

Overview

- Case Histories of Rail on EPS
- Numerical Modeling of Case Histories
- Deflection Monitoring
 - Commuter Rail
 - Light Rail
- Subsequent Ballast Testing

Light Rail Embankments

IMAGINE

UNIVERSITY of UTAH

TH

Deflection Monitoring Location

Light-Rail Deflections

Overview

- Case Histories of Rail on EPS
- Numerical Modeling of Case Histories
- Deflection Monitoring
 - Commuter Rail
 - Light Rail
- Subsequent Ballast Testing

Ballast Testing

Low confinement cyclic triaxial testing of Ballast

Ballast Testing

IMAGINE THE UNIVERSITY OF UTAH

Cyclic Chamber Testing of Ballast

Ballast Testing

IMAGINE THE UNIVERSITY OF UTAH

EPS Rail Embankment Conclusions

- Dynamic Deflection of EPS Embankment for Commuter Rail System is about 4 mm (0.16")
- Dynamic Deflection of Earthen Embankment for Commuter Rail System is about 10 mm (0.39")
- Dynamic Deflections on Light-rail system was one order of magnitude less than those measured on Commuter Rail
- Numerical modeling can be used to estimate these deflections
- Stiffness properties of Ballast can be highly variable depending on confinement, number of cycles and amplitude of applied cycle
- EPS appears to provide embankment and rail support for commuter and light-rail rail applications

