Evaluation and Performance of Lightweight Material Supporting Rail Systems

Steven F. Bartlett, Ph.D., P.E. University of Utah

Introduction – Lightweight Materials Advantages

• Low inertial forces

- small m (mass) produces small F_i
- High strength to weight ratio
- Energy Loss
	- Compressible **Increased Damping**
- Manufactured materials with low variability in mechanical properties

Material Properties – EPS and Cellular Concrete

EPS

- Weight
	- 0.7 to 2.85 pcf
- Compressive Strength
	- 5 to 60 psi (10% strain)
	- 2.2 to 18.6 psi (1% strain)
		- Elastic Range
- Young's Modulus
	- 220 to 1,860 psi

LCC

- Weight
	- 20 to 45 pcf
		- Typical constructed values
- Compressive Strength
	- 50 to 400 psi
- Young's Modulus
	- 220 to 275 ksi

Grade Separation for Union Pacific Mainline

Design Considerations – Spectral Accelerations

- 1. Level 1 –The embankment structure should remain intact with no permanent deformation (i.e. the seismic loads must remain within the elastic range of the stress-strain curve of the embankment).
- 2. Level 2 –The embankment structure should be repairable, with only minor permanent deformation.
- 3. Level 3 –The embankment structure must not collapse after experiencing permanent deformations.

AREMA (2010)

Typical Cross Section

(1) 8.5-foot wide concrete ties with ballasted track section [12 inches ballast/18 inches sub ballast],

(2) 3-foot thick upper layer of Class IV cellular concrete,

(3) variable thickness of Class II cellular concrete,

(4) 2.5-foot thick Class IV layer of cellular concrete with a 4-foot deep shear key embedded in the foundation soils (at higher embankment sections),

(5) vibro-replacement stone columns approximately 15 ft deep in the foundation soils.

Geofoam Rail Embankments – Conceptual Drawing

Design Considerations – Design Time Histories

Figure 5. Comparison of spectrally-matched time histories with Level 3 target spectrum.

Design Considerations – Numerical Model

Design Considerations – Colton Crossing Summary

- Evaluations suggest that the LDCC embankment remained in the elastic range for AREMA Level 1 and 2 earthquakes and will not exceed the peak shear strength under any of the AREMA Level 1, 2 and 3 earthquakes.
- Reinforcement of the LDCC mass is recommended to prevent the potential for minor cracking resulting from excitation.
- Interlayer sliding and overstressing of LCC due to sway did not occur.
- Estimated basal sliding of the tallest section of the embankment is expected to range from 1 to 4 inches at the Level 2 earthquake, and from 4 to 7 inches at the Level 3 earthquake.
- The presence of basal shear key was integral to limit basal sliding for the AREMA Level 3 event. Higher strength LCC is also recommended near the top and base of the embankment.
- Rocking mode is not significant and any minor overstressing from such should be addressed by higher strength LCC in basal layer.

Rail Systems on EPS Geofoam – NSB Rail Line – Skien, Norway

OF UTAH

THE UNIVERSITY

34.8 kips / axle

Light Rail Systems on EPS Geofoam

IMAGINE

Light rail EPS Embankment Construction in Netherlands – Milan Duskov

Overview

- **Case Histories of Rail on EPS**
- **Numerical Modeling of Case Histories**
- **Deflection Monitoring**
	- **Commuter Rail**
	- **Light Rail**
- **Subsequent Ballast Testing**

Light Rail Embankments – Roper Yard – Salt Lake City

THE

UNIVERSITY OF UTAH

UTA –Light Rail – Salt Lake City, Utah

Light Rail Embankments – Roper Yard – Salt Lake City

UTA –Light Rail – Salt Lake City, Utah

Light Rail Embankments – Roper Yard – Salt Lake City

UTA –Light Rail – Salt Lake City, Utah

Commuter Rail Embankments – Draper, Utah

Front Runner – UTA – Corner Canyon – Draper Utah

Modeling of Commuter Rail Embankments – Draper, Utah

Front Runner – UTA – Corner Canyon – Draper Utah

Vertical Deflections (mm) measured from train loads (Frydenlund et al., 1987).

UNIVERSITY OF UTAH

THF UNIVERSITY OF UTAH

IMAGINE ш THE

UNIVERSITY OF UTAH

3D model with symmetry

IMAGINE

UNIVERSITY

OF UTAH

2.3 mm of deflection predicted by numerical model

Range of measurements was 2 to 3 mm under static loading by NSB personnel

Modeling of Rail Systems on EPS Geofoam – Commuter Rail Corner Canyon

Modeling -Typical Section for Commuter Rail

ă,

OF UTAH

THE

IMAGINE

Modeling of Rail Systems on EPS Geofoam – Commuter Rail

Modeling of Rail Systems on EPS Geofoam – Commuter Rail

Modeling of Rail Systems on EPS Geofoam – Commuter Rail

6 mm of vertical displacement predicted by model 4 mm (max) measured by accelerometers

Overview

- **Case Histories of Rail on EPS**
- **Numerical Modeling of Case Histories**
- **Deflection Monitoring**
	- **Commuter Rail**
	- **Light Rail**
- **Subsequent Ballast Testing**

Deflection Monitoring Locations – Corner Canyon

Locomotive Loading – Commuter Rail

LIVE LOAD

Car Loading – Commuter Rail

Deployment of Accelerometers – 3 Component

EPS Embankment Accelerations – Commuter Rail

EPS Embankment Deflections – Effects of Upper Frequency Bandpass Filtering on Integration

TH

UNIVERSITY OF UTAH

Earthen Embankment Deflections – Commuter Rail

Overview

- **Case Histories of Rail on EPS**
- **Numerical Modeling of Case Histories**
- **Deflection Monitoring**
	- **Commuter Rail**
	- **Light Rail**
- **Subsequent Ballast Testing**

Light Rail Embankments

IMAGINE

TH UNIVERSITY OF UTAH

Deflection Monitoring Location

Light-Rail Deflections

IMAGINE THE **UNIVERSITY**
^{OF} **UTAH**

Overview

- **Case Histories of Rail on EPS**
- **Numerical Modeling of Case Histories**
- **Deflection Monitoring**
	- **Commuter Rail**
	- **Light Rail**
- **Subsequent Ballast Testing**

Ballast Testing

Low confinement cyclic triaxial testing of Ballast

Ballast Testing

IMAGINE THE UNIVERSITY

Cyclic Chamber Testing of Ballast

Ballast Testing

 $E = 52$ Mpa (low confinement)

EPS Rail Embankment Conclusions

- Dynamic Deflection of EPS Embankment for Commuter Rail System is about 4 mm (0.16")
- Dynamic Deflection of Earthen Embankment for Commuter Rail System is about 10 mm (0.39")
- Dynamic Deflections on Light-rail system was one order of magnitude less than those measured on Commuter Rail
- Numerical modeling can be used to estimate these deflections
- Stiffness properties of Ballast can be highly variable depending on confinement, number of cycles and amplitude of applied cycle
- EPS appears to provide embankment and rail support for commuter and light-rail rail applications

