Construction and Long-Term Performance of Innovative Geotechnologies

Steven F. Bartlett Ph.D., P.E. Associate Professor University of Utah

I-15 Project Limits

Approx. 100,000 cubic meters of geofoam was placed

I-15 Reconstruction - Quick Facts

- Single Largest Design-Build Highway Contract in U.S.
- 17 Miles of Urban Interstate
- \$1.5 Billion (Project Cost)
- Wasatch Constructors (Prime Contractor)
- **4 Year Construction Duration (1997 2001)**
- 144 Bridges/Overpass Structures
- 160 Retaining Walls (mostly MSE Walls)
- \$350 K Embankment Study

Geotechnical Issues

- Large Primary Consolidation Settlement (1 to 1.5 m)
- Time Rate of Consolidation (2 years to end of primary)
- Creep Settlement (Bump at Bridge)
- Foundation Stability (Large Embankments on Soft Soils)
- Schedule Constraints (two 2-year projects)
- Maintenance of Traffic (Had to be maintained)
- New Technologies and Development of Specifications

Subsurface Profile in Salt Lake Valley

Settlement of Soft Clays in Salt Lake Valley

Approximate 2 years of primary settlement

I-15 Embankment Construction 2-stage MSE wall with surcharge

Prefabricated Vertical Drains

Installed drain

PV Drain Spacing 1.5 to 2.5 m triangular spacing

Placement of anchor bar

PV drain pushed into ground

2-Stage MSE Walls

Right-of-way constraints required many slopes to be built vertically.

Beginning of 2-stage MSE Wall

2-Stage MSE Wall Connections

Attachment of Panels with threaded rod

Female threaded rod coupler

Concrete Fascia Panel

2-Stage MSE Wall with Prefabricated Vertical Drains Cost and Schedule Comparison

	Existing Embankment Removal (\$6/m³)	\$9,500		
ſwo-Stage MSE Wall	Bedding Sand (\$7/ton, 1 crew 2 days)	\$2,500	0.5	
	PV Drain Installation (1.5 m triangular spacing) (\$1.5/m without pre-drilling, \$3/m with pre-drilling)	\$14,000	1.5	
	Wall/Embankment Construction and Settlement Time (\$300/m ² wall face, \$9/m ³ embankment)	\$54,000	2	
	3-stage Embankment Construction, Surcharging, Settlement Time, and Removal (<i>Placement - \$9/m³, Removal - \$6/m³</i>)	\$20,000	10	
	Total =	\$100,000	14	

Total cost is for 10 m length of embankment

I-15 Embankment Construction 1-stage MSE wall with lime cement columns

Lime Cement Stabilized Soil

Auger / Mixer for Lime and Cement

Lime Cement Column Rig

125 kg/m³ 15% lime 85% cement M = 30 Mpa (design); Su 300 to 400 kPa

Lime Cement Column Installation Pattern

1-Stage MSE Wall Construction

1-stage MSE placed over columns

Finished MSE wall

1-Stage MSE Wall with Lime Cement Stabilized Soil Cost and Schedule Comparison

Geotechnology	Various Construction Activities (With Typical Unit Cost)	Associated Costs (Year 2000)	Time (months)
Lime Cement Columns	Existing Embankment Removal (\$6/m³)	\$9,500	0.25
	Lime Cement Column Installation (0.8 m column - \$17.5/m, 0.6 m column - \$16/m)	\$97,000	2
	One-Stage MSE Wall/Embankment Construction (\$200/m ² wall face)	\$43,500	1
	1-stage Embankment Construction, Surcharging, Settlement, and Removal (<i>Placement</i> - \$9/m³, Removal \$6/m³)	\$10,000	8.75
	Total =	\$160,000	12

Total cost is for 10 m length of embankment

I-15 Reconstruction Geofoam Embankment

I-15 Reconstruction Geofoam Properties

Physical Property	ASTM Test Procedure	Type VIII Accepted Value	Type II Accepted Value	Tolerances
Density	D1622	18 kg/m ³	22 kg/m ³	$\pm 10 \%$
Compressive Resistance	D1621	90 kN/m ²	104 kN/m ²	minimum @ yield or 10 percent axial deformation
Flexural Strength	C203	208 kN/m ²	276 kN/m ²	Minimum
Water Absorption	C272	3	3	<% by volume

Table 2. Properties of Type VIII Geofoam Specified for the Reconstruction I-15 Project.

* I-15 used 1.25 pcf density exclusively (i.e., type VIII geofoam)

Geofoam (I-80 State Street to 200 West St.)

Geofoam Embankment Construction

Footing for Panel Wall and Block Placement

Base Sand

Geofoam Embankment Construction

Geofoam cut and placed around piling at bridge abutment

Nearly Completed Geofoam Embankment with Vertical Face

Transition Zone with MSE Wall

Geofoam Embankment Construction

Completed Load Distribution Slab

Reinforced Concrete Load Distribution Slab

Geofoam Embankment Finished

Geofoam Embankment with Tilt-up Panel Wall Cost and Schedule Comparison

	Existing Embankment Removal (\$6/m ³)	\$1,500	0.25
Geofoam	Bedding Sand (\$7/ton, with 1 crew 1 week)	\$5,500	0.25
	Geofoam Embankment (\$45/m³)	\$65,000	2
	Tilt-up Panel Wall (\$200/m ² wall face)	\$20,000	0.75
	Load Distribution Slab (\$60/m ² surface area)	\$23,000	0.5
	Embankment Above Geofoam (\$9/m³)	\$5,000	0.25
	Total =	\$120,000	4

Total cost is for 10 m length of embankment

Final Cost and Schedule Comparison

Cost represents total construction costs for each system for a 10-m long reach of interstate. Construction time is typical for embankments built on the I-15 Reconstruction Project.

Performance Monitoring Objectives of Geofoam Arrays

- Measure Creep Settlement of Geofoam Mass (10 yr.)
- Measure the Pressure Distribution within Geofoam
- Measure Differential Settlement in Transition Zones
- Measure Lateral Earth Pressure at Abutments
- Monitor for Differential Icing at Geofoam / Embankment Transition Zones
- Model Stress / Strain Behavior

Typical Geofoam Array

3300 South Geofoam Array Installation

Magnet Extensometer and Pressure Cell Installation

Pressure Cell Cast in Bridge Abutment

Hotwire Cut for Pressure Cell

Pressure Cell in Base Sand

3300 South Geofoam Array Damage to Connections During Construction Loading

Damaged Connection

• Approximately 1% loading strain can be expected.

• Strain due to seating of untrimmed block and elastic compression.

• Damaged connection was later repaired by dowels.

• Rigid connect should be avoided.

Settlement at Toe of Wall

Geofoam Transition Zones Post-Construction Settlement

Transition slope 3.5 H : 1 V

Settlement Monitoring 100 South Street

1% construction strain

projected 0.5 % additional 50 yrs.

Pressure Cell Measurements in Geofoam

Date

Geofoam Performance Summary

- **1.** Geofoam fills are performing as expected
- 2. Approximately 1 percent vertical strain occurred during construction.
 - a. Strain due to seating and compression of geofoam.
 - b. This strain can damage rigid connections.
- **3.** Approximately 0.3 percent creep strain (15 mm) has occurred in the geofoam for an 8-year post construction period. This is acceptable and within the expected performance.
- 4. The vertical stress distribution that develops in a geofoam wedge fill is complex, but generally diminishes with depth.
- 5. Pressure cell measurements suggest that approximately 45 kPa of vertical stress has developed in the center of the geofoam mass. This is approximately 50 percent of the compressive strength of the geofoam.

Settlement Comparison I-15 Geotechnologies

Settlement Conclusions I-15 Geotechnologies

 Geofoam has met the 75 mm (3 inch) in 10-yr settlement goal in all cases.

LCC Treated soil has met the 75 mm in 10-yr settlement goal.

 2-Stage MSE Walls have not met the 75 mm in 10-yr settlement goal for the MSE wall and embankments monitored. The expected range of settlement for these system is 100 (4 in) to 150 mm (6 in) for a 10-year post construction period.

Principal Investigators

UTAH UTES

SYRACUSE ORANGEMEN

bartlett@civil.utah.edu

Published Reports

Farnsworth C. F., Bartlett S. F., Negussey, D. and Stuedlein A. 2008, "Construction and Post-Construction Settlement Performance of Innovative Embankment Systems, I-15 Reconstruction Project, Salt Lake City, Utah," Journal of Geotechnical and Environmental Engineering, ASCE (Vol. 134 pp. 289-301).

Bartlett, S. F. and Lawton E. C., 2008, "Evaluating the Seismic Stability and Performance of Freestanding Geofoam Embankment," 6th National Seismic Conference on Bridges and Highways, Charleston, S.C., July 27th –30th 2008, 17 p.

Newman, M. P., Bartlett S. F., Lawton, E. C., "Numerical Modeling of Geofoam Embankments," Journal of Geotechnical and Environmental Engineering, ASCE (final review).

Bartlett S. F., Farnsworth, C., Negussey, D., and Stuedlein, A. W., 2001, "Instrumentation and Long-Term Monitoring of Geofoam Embankments, I-15 Reconstruction Project, Salt Lake City, Utah," EPS Geofoam 2001, 3rd International Conference, Dec. 10th to 12th, 2001, Salt Lake City, Utah, 23 p.

Published Reports

Negussey, D., Stuedlin, A. W., Bartlett, S. F., Farnsworth, C., "Performance of Geofoam Embankment at 100 South, I-15 Reconstruction Project, Salt Lake City, Utah," EPS Geofoam 2001, 3rd International Conference, Dec. 10th to 12th, 2001, Salt Lake City, Utah, 22 p.

Bartlett, S. F., Negussey, D., Kimball, M., 2000, "Design and Use of Geofoam on the I-15 Reconstruction Project," Transportation Research Board, January 9th to 13th, 2000, Washington, D.C., 20 p.

Bartlett, S. F., 2005, "Lightweight Solution," Infrastructure Technology, Spring 2005, pp. 36-40 (Chinese and English).

Bartlett, S. F., Negussey, D. and Kimble, M., 2000, "Design of Geofoam Embankments for the I-15 Reconstruction," Conference on Application and Design of Expanded Polystrene, Sponsored by Taiwan Area National Expressway Engineering Bureau and China Engineering Consultants, Inc., March 3rd, 2000, Taipei, Taiwan, 20 p. (in Chinese).

