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General Applications

Road construction over poor soils
Road widening

Bridge abutment

Bridge underfill

Culverts, pipelines & buried structures
Compensating foundation

Rail embankment

Landscaping & vegetative green roofs
Retaining and buried wall backfill
Slope stabilization

Stadium & theater seating

Levees

Airport runway/taxiway

Foundations for lightweight structures




Geofoam Properties

ASTM D6817 Physical Property Requirements of EPS Geofoam

EPS15 EPS19 EP522

Density, min., 11.2 (0.70) | 14.4 (0.90] | 18.4 [1.15]) | 21.6 (1.35) | 28.8 (1.80) | 38.4 (2.40) | 45.7 (2.85)
ka/mb/ft)

Compressive Resistance, min., 5 (2.2) | 25 (34 | 40 (5.8 |50 (7301 | 75 (10.9) | 103 (15.00 | 128 (18.8)
kPa [psi] at 1%

Compressive Resistance, min., | 35 55 18.00 | 90 (13.1) | 115 [16.7) | 170 (24.7) | 241 [35.00 | 300 (43.5)
kPa [psil at 5%

Compressive Resistance, min., (5.8) 70 (10.2) | 110 [16.0) | 135 (19.46) | 200 (29.0) | 276 (40.0) | 345 (50.0)
kPa [psi] at 10 %*

Flexural Strength, min., A9 (10.0) | 172 125.0) | 207 (30.0) | 240 (35.0) | 345 [50.0) | &14 [60.0) | 517 [75.0)
kPa [psi

Oxygen index, min., 24.0 240 24.0 24.0 24.0 24.0 2460
volume %




Geofoam Advantages

Light weight material
 Reduces static and seismic loads to walls, buried
structures
- Improves slope stability (static & dynamic)
- Reduces consolidation settlement on soft ground

Controlled Compression (Compression Inclusion)
- Can undergo elastic and plastic deformation but
maintains general shape

- Reduces load to buried structures by compression
and mobilization of surround soil strength
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Figure 3. Excavation of the first
EPS embankment at Flom
bridge (EPS and

polyvurethane as protective
layer).

Flom Bridge — 1972 - Noxrway




Road Construction Over Poor Soils

LESSONS LEARNED

At the time of the first project we were particularly concerned about the following
- the constant vibrations of the traffic which possibly could cause horizontal
movements of the fill structure
leakage of petrol following a tanker accident which could cause the embankment to
dissolve

In order to safeguard the repeated vibrations, the first EPS embankment was meant to be built up
with a small slope towards the centre of the road. The contractor eventually 1gnored this, and such
precautions were later never prescribed.

In order to protect against petrol leakage. the embankment was protected with a 10 cm polyurethane
cover. Very soon it also became apparent that the risk for an overturning tanker on an EPS
embankment was extremelyv low, and that the use of a concrete slab was a more practical way of
combining the required protection of the underlving EPS blocks with the need for pavement strength
and binding together the EPS structure.




Typical Roadway Construction
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Geofoam Embankments

Freestanding Embankment

Sloped Embankment

UTA —Light Rail — Salt Lake City, Utah
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Sources of Permanent Ground Deformation

Tectonic Faulting

Subsidence and Settlement

Landsliding and Other Types of Mass Movement
Liquefaction and Lateral Spread

Karst

Collapsible Soils
Expansive Soils
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Pipelines (Protection for Normal and Reverse Faulis)
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Pipelines (Protection for Strike Slip Faulis)

Alaskan Pipeline - Strike Slip Fault
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Pipelines (Light-weight Cover Over Normal Faulis)

JOB TITLE : Geofoam Moments 1o

FLAC (Version 5.00) | Profile (Longitudinal) View
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Displacement Vectors During Failure
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Vertical Upliit Tests
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Force-Displacement Curves from Uplift Tests
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Pipelines (Light-weight Cover Over Faulis)
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Horizontal Offset from Permanent Ground
Displacement
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Horizontal Offset from Permanent Ground
Displacement




Horizontal Offset from Permanent Ground
Displacement
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Horizontal Offset from Permanent Ground
Displacement
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Reduction of Settlement around Buried Structures

Federal Courthouse

Casino/Hotel - Reidoso, NM




Earth Pressure Theory - Active Case

Tension cracks
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Buried Structures and Walls (Compressible

Inclusion)
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Reduction of Peak Seismic Thrust
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Reduction of Peak Seismic Thrust
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Reduction of Peak Seismic Thrust

Double EPS buffer system
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Fig. 8. Seismic isolation efficiency in relation to the total EPS
thickness for single rectangular and double
EPS buffer systems.
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Seismic Stability Considerations

* Primary Modes of Potential Failure

» Global Stability of slope/embankment with strong motion

» Sliding (Basal, Interlayer and Cap)

* Rocking and Sway (Internal yielding and damage to corners)
» Overturning (for slender aspect ratios)

» Bearing Capacity?




Conceptual Reconstruction of Failed Slope with EPS
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Conceptual Reconstruction of Failed Slope with EPS
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Slope Remediation and Roadway Widening — 2*¢ Mesa Arizona




Slope Remediation and Roadway Widening — 2*¢ Mesa Arizona
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So0il Nail Stabilization of Slope
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Placement of EPS




Construction of Load Distribution Slab




Finished Roadway




Global Stability Failure of Retaining Wall (Philippines)
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Global Stability Failure (Philippines)




Global Stability Failure




Slope Remediation Design

BUILDING

TYPICAL

G_‘-“_'"‘—-— TOPSOQIL, LANDSCAPING, ETC. WITH FALL PROTECTION BARRIER

GEOFOAM

SHOTCRETE OR REINFORCED MACROCRETE FACING
PROPOSED SHOTCRETE WALL

W/ SOILNAIL ANCHORS
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PROVIDE SHEAR KEYS (AS REQUIRED)

.
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PVC HORIZONTAL
W/ GEOTEXTILE

0.5-m WIDE {min.) BENCHES WOODRIDGE PARK MSE W

ON SOILNAILED BACKSLOPE

4.9-m WIDE (min.) BASE
WITH 0.6-m DEEP
EMBEDMENT

Area calculations

213 squares x 1 m"2 / 4 squares = 53 m2

Volume calculations




Final Slope Configuration




Seismic Evaluation of Free-Standing Embankments

Freestanding Embankment

UTA -Light Rail — Salt Lake City, Utah




Sliding Evaluations
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FLAC (Version 5.00)
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Horxizontal Acceleration Response Spectra

Response Spectra (5% Damping)
Motion Earthquake M Component

1989 Loma Prieta. CA 6.9 : Capitola 000
1989 Loma Prieta. CA 6.9 : Capitola 090
1999 Duzce, Turkey 7.1 . Duzce 130
1999 Duzce, Turkey 7.1 . Duzce 270
1992 Cape Mendocino. CA 7.1 . Petrolia 000
1992 Cape Mendocino. CA 7.1 . Petrolia 090
1994 Northridge, CA 6.7 . Sylmar 052
1994 Northridge. CA 6.7 . Sylmar 142
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Vertical Acceleration Response Spectra

Response Spectra (5% Damping)
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Elastic Properties for Sliding Evaluations

Layer o] E K G

. 6
Material Type  “No.  (kgim?)* (MPays Y (MPa)”  (MPa)?

Foundation
Soil 1-10

Geofoam 11-18 18 10 0.103 4.2 4.5

1840 174 0.4 290.0 62.1

UTBC! 19 2241 570 0.35 633 211

LDS? & PCCP? 19 2401 30000 0.18 15625 12712

L Untreated base course, 2 Load distribution slab, 2 Portland concrete cement pavement, 4
Mass density, ° Initial Young’s modulus, ¢ Poisson’s ratio,  Bulk modulus, 8 Shear modulus




Interface Properties for Sliding Evaluations

Interface Normal and

number Shear

(bottom  Stiffness (k Friction angle
Contact Surface totop) =k)(MPa) (degrees)

Geofoam-soil 102 311

Geofoam-Geofoam 102 38

Geofoam-Lump Mass 102 382

L A glued interface was used for interface 1 in FLAC because the geofoam
is abutted against the panel wall footing and cannot slide. 2 Neglects any
tensile or shear bonding that may develop between the top of geofoam and

base of the load distribution slab.




Displacement Vectors from FLAC




Relative and Total Sliding Displacement
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Sliding Displacement Summary

Horizontal Vertical Motion Displacement
Motion (m)
1 Not applied 0.06
1 0.06
Not applied 0.01
1 0.05
Not applied 0.06
2 0.06
Not applied 1.3
2 1.3
Not applied 0.005
3 0.01
Not applied 0.05
3 0.06
Not applied 0.5
4 0.6
Not applied 0.6
4 0.5

1
2
2
3
3
4
4
5
5
6
6
/
/
8
8




Shear Keys to Prevent Sliding




Conclusions

Light weight EPS cover systems can be effective in
preventing rupture of steel-pipelines undergoing
vertical offset from permanent ground displacement.
Preliminary modeling results suggest that static and
seismic earth pressures can be reduced significantly

using EPS placed against buried structures.

Because of its light-weight nature, EPS geofoam offers
significant benefits in slope reconstruction .

Large, free-standing EPS embankments are generally
stable for earthquakes, but overall stability can be
improved by including shear keys, adhesives or other
mechanical or structure countermeasures.




Questions ?




