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Objectives (UDOT contract)

» Monitor the long-term performance of geofoam embankments and
compare its settlement performance with other embankment systems.
» Measure the differential settlement in MSE wall transition zones.
» Measure the vertical stress distribution that develops in the
geofoam embankment.
» Measure the vertical and horizontal stress that develops in a
typical bridge abutment.
» Develop and calibrate a numerical model (FLAC) for predicting the
vertical and horizontal static stress distribution in the geofoam mass for
the instrumented embankment and abutment areas.
» Use the FLAC model to predict the seismic response and sliding
stability of typical geofoam configurations.
 Evaluate the possible magnitude of the vertical stress transfer that is
occurring to the tilt-up panel wall at 3500 South using FLAC.
» Measure the temperature profile in the pavement section.




Objectives

» Long Term Monitoring
 Construction Settlement
 Post-Construction Settlement
e Transition Zones
* Settlement Performance Comparison
» Assessment and Modeling of Performance Data
o Settlement
e Pressure Distribution
o Vertical
e Horizontal
» Connections and Panel Walls
* Seismic Design
 General Design
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Primary Uses of Geofoam on the I-15 Project

e Reduce Settlement to Protect Buried Utilities
e Improve Slope Stability of Embankments
e Rapid Construction in Time Critical Areas




EPS Density

Property |ASTM Type VII*
Test
C 578

Nominal |C303/D
Den5|gy 1622
(kg/m”)

Minimum |C303 /D
Den5|t3y 1622
(kg/m”)

* Type VI was used for 1-15 Reconstruction




Objectives

 Construction Settlement
» Post-Construction Settlement
* Transition Zones
* Settlement Performance Comparison
» Assessment and Modeling of Performance Data
* Settlement
 Pressure Distribution
* \ertical
» Horizontal
e Connections and Panel Walls
* Seismic Design
 General Design
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Geotechnical Instrumentation
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Geotechnical Instrumentation




Geofoam Placement Areas
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100 South Array
(Construction)




100 South Array
(cross-section view)
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100 South Array
(Load and Pressure Cells)
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100 South Array

(Vertical Strain)
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100 South Array
(Creep Settiment)
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3300 South Instrumentation Array
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3300 South Array
(Construction)




3300 South Geofoam Array
(Cross-Sectional View)
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3300 South Array
(Load and Pressure Cells)
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3300 South Array
(Settlement in Transition Zones)
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3300 South Array
(Creep Settlement)
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State Street Instumentation
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State Street Construction




State Street Array
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State Street Array
(Pressure Cells Measurements)
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Geotechnologies’ Settlement Performance
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Conclusions

» EPS geofoam exhibited the best overall settlement performance of
the 1-15 geotechnologies

e Compression, seating and inter-block gap closure of EPS
produced about 1 percent vertical deformation during construction
loading.

o \ertical pressure levels are in reasonable agreement with
allowable design limits of about 30 kPa.

o|-15 EPS embankment has undergone about 0.2 to 0.4 percent
creep deformation in a 10-year post construction period.

*The 10-year design criterion has been met and the 50-year design
criterion of 1.5 percent total strain will most likely be met.




Objectives

» Long Term Monitoring
 Construction Settlement
» Post-Construction Settlement
* Transition Zones
* Settlement Performance Comparison

* Settlement
 Pressure Distribution
* \ertical
» Horizontal
e Connections and Panel Walls
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Bi-linear Settlement Model
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Modeling of Vertical Displacement
with EPS Embankment
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Modeling of Horizontal Stresses
(State Street Array)
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Modeling of Horizontal Stresses
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Connections

LIFTING HOLE
NTS

50 DIA EXPANDED

#13 DOWEL W/THREADED

POLYSTYRENE SLEEVE
178 SQUARE
BLOCKOUT ™\ (
_/—TOP OF CURB \

FACE OF I‘ALL"\

#13 DOWEL W/
THREADED END

WALL TO LDS CONNECTION

DETAIL /3

NTS —_—

END ONE END & 25 SQUARE
R WELDED AT OTHER END

Damaged Connection

e Approximately 1%
loading strain can be
expected.

e Strain due to seating of
untrimmed block and
elastic compression.

» Damaged connection
was later repaired by
dowels.

 Rigid connect should be
avoided.




Objectives

» Long Term Monitoring
 Construction Settlement
» Post-Construction Settlement
* Transition Zones
* Settlement Performance Comparison
« Assessment and Modeling of Performance Data
* Settlement
 Pressure Distribution
* \ertical
» Horizontal
e Connections and Panel Walls

 General Design




Horizontal Acceleration Response

Spectra

Response Spectra (5% Damping)

Motion Earthquake M R (km) | Component PGA (g)
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Vertical Acceleration Response

Spectra

Response Spectra (5% Damping)
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Numerical Modeling Approach

* FLAC (Fast Lagrangian Analysis of Continua)
2D or 3D
» Explicit Finite Difference Method
 Large Strain Mode
« Sliding and Separation at Nodal Interfaces
* Nonlinear Modeling capability

» Elasto-Plastic Model w/ Mohr-Coulomb Failure
Criteria and Plastic Post-Yield Behavior

» Hysteretic damping

NIVERSITY
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Sliding Evaluations

JOBTITLE :. (8 m high x 20 m wide) C1om)
FLAC (Version 5.00)
T,=05s
L 3.500
LEGEND
30-Mar-08 18:20 i I
step 17000 Combined|cap
-3.333E+00 <x< 6.333E+01 | 2.500
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Density

B 1.3800E+01

L | 1.840E+03
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max vector = 2.041E+05
| | |
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Elastic Properties for Sliding
Evaluations

p G
V6 K (MPa)” (MPa)
8

E
(MPa)®

Layer

3
No. (kg/m

)4

Material Type

Foundation
Soil 1-10

Geofoam 11-18 18 10 0.103 4.2 4.5

1840 174 0.4 290.0 62.1

UTBC! 19 2241 570 0.35 633 211

LDS? & PCCP3 19 2401 30000 0.18 15625 12712

1 Untreated base course, 2 Load distribution slab, 3 Portland concrete cement pavement, 4
Mass density, ° Initial Young’s modulus, ¢ Poisson’s ratio,  Bulk modulus, 8 Shear modulus

NIVERSITY
OF[ JTAH




Interface Properties for Sliding
Evaluations

Interface Normal and

number Shear

(bottom  Stiffness (k
Contact Surface totop) =k)(MPa)

Friction angle
(degrees)

Geofoam-soil 102

Geofoam-Geofoam 102

Geofoam-Lump Mass 102

31!

38

382

L A glued interface was used for interface 1 in FLAC because the geofoam
is abutted against the panel wall footing and cannot slide. 2 Neglects any
tensile or shear bonding that may develop between the top of geofoam and

base of the load distribution slab.
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Displacement Vectors from FLAC
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Relative and Total Sliding

Displacement
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Sliding Displacement Summary

Case Horizontal /o vical Motion  DiSPlacement
Motion (m)

1 Not applied 0.06
1 0.06
Not applied 0.01
1 0.05
Not applied 0.06
2 0.06
Not applied 1.3
2 1.3
Not applied 0.005
3 0.01
Not applied 0.05
3 0.06
Not applied 05
s 4 0.6
b Not applied 0.6

o 4 o5 [T
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1b
2a
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3a
3b

4da
4b
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Shear Keys to Prevent Sliding

Shear Key




Rocking/Uplift and Sway Evaluations

Model Modifications

* interface nodes removed (no sliding between layers)
* overlying concrete was “bonded” to geofoam
* basal sliding prohibited

* M-C model with hysteretic damping including tensile, compression
and shear properties specified

* both vertical and horizontal component present NIVERSITY
OF[ JTAH




Rocking and Uplift Results

Max. uplift (left corner)

(m)

Max. uplift (right
corner) (m)

0.06
0.02

0.2

0.2

0.01
0.03

? rotation due to
tensile yielding

0.25

0.05
0.04
0.2

? rotation due to
tensile yielding

0.01

0.03

0.2
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Sliding Calculations (simplified)

Table 17 Example interiayer sliding caloulstion

H= 2 m

Block thickness = 0.81 m
number of interfaces

normal stress kPa

interface friction 0.8 [gzofoam - geofoam)

interface friction 0.6 [ezofoam - sail)

geofoam shear strength 23 psi [EPS19 usad in shear key)

gaofoam shear strensth 157.3 kP=z

Hariz. Mass inertial resisting  shear resisting F5

interface Accel. [ke/m=} force sliding key force sliding
(&)

[M/m=) force coverage fromkey [w/ key)
(N/m?] (3] (M/m=}

b 19073 9429
E 0.791 25E5 20064 159478 4 6293 1.28
7 0.735 2585 15621 196381 3 4720 1.21
& 0.678 2585 17198 159584 2 3146 1.24
5 0.622 2585 15765 20087 1 1573 1.27
4 0.565 2585 14332 20290 0 0 142
3 0.50%9 2585 12858 20290 0 a 1.57
2 0.452 2585 11455 20290 a 0 1.77
0.296 2585 10022 20290 a a 2.02
0 0.339 2585 85949 15217 a a 1.77




Conclusions

Modeling offers insight into dynamic behavior of EPS
embankments subjected to large, nearby earthquake and
can be used for design and improving construction
practices.

Interlayer sliding is possible for large, near source
earthquakes and is sensitive to long-period pulses in the
iInput motion.

Shear keys can be employed to prevent such sliding.

Rocking and uplift do not appear to governing failure
modes.

Yielding (tension) appears to be possible in some basal
layers, if sliding is prohibited.
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Objectives

» Long Term Monitoring
 Construction Settlement
» Post-Construction Settlement
* Transition Zones
* Settlement Performance Comparison
« Assessment and Modeling of Performance Data
* Settlement
 Pressure Distribution
* \ertical
» Horizontal
e Connections and Panel Walls
* Seismic Design




2 Layer Model




Vertical Stress Distributions
18 kip tire dual tire load
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3 Layer Model
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Vertical Stress Distributions
18 kip tire dual tire load

Vertical Stress (kPa)

Depth (m)
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General Design Conclusions

» Review of Current Design Methods for Allowable Stress in EPS
 Japanese Practice
» European Design Codes (2011)
* NCHRP 529
*|-15 Design was done using Draft European Design Codes (1998)
» Based on performance data, this methodology is acceptable
*Recommend a Combination of:
* NCHRP 529 and European Design Codes (2011)
 Neither Code Fully Addresses Vertical Stress Distributions for
Layered Systems with Load Distribution Slabs
* Typical Vertical Stress Distributions from Numerical
Modeling




Questions




