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 ABSTRACT 

 

     Questar Corporation commissioned and funded this research, in partnership with the 

University of Utah and Bechtel Corporation, to develop methods of protecting steel 

natural gas pipelines crossing zones of permanent ground deformation. The goal of this 

research was the development and testing of an Expanded Polystyrene (EPS) Geofoam 

cover system for such pipelines across active faults or areas of permanent ground 

deformation (e.g., landslides, permafrost thaw, liquefaction-induced lateral spread). The 

goal of an EPS Geofoam cover system atop a buried pipeline is to reduce the lateral, 

longitudinal and vertical forces induced on the pipe as the surrounding ground undergoes 

permanent deformation. The properties of EPS Geofoam have distinct advantages that 

lead to improved pipe performance during large ground deformation. The most important 

of these are its low unit weight and relatively high compressibility. These advantages are 

the primary focus of this research. Further, the interaction of a pipe and EPS Geofoam 

was explored and analyzed in a loading case where the pipe was pushed directly into the 

EPS. In addition to laboratory-scale tests, full-scale tests were conducted with vertical 

and horizontal plane strain movement of pipe interacting with EPS Geofoam cover 

systems. Subsequently, numerical modeling was done of the field tests to further evaluate 

the use of an EPS cover system for applications experiencing large, permanent 

deformation. The results of the research program have shown that EPS Geofoam can be 

used as a cover system for steel pipelines crossings at active normal faults, or for other 
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types of permanent ground deformation where the expected offset is predominately 

vertical. 
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 INTRODUCTION 

 

This research was funded by a research contract with Questar Corporation of Salt 

Lake City, Utah and a Research Technical Grant from Bechtel Corporation of San 

Francisco, California.  The impetus for this research originates from conversations 

between Mr. Peter McDonough of Questar Gas Company and Dr. Steven Bartlett of the 

University of Utah.  The laboratory work to explore the concept of using a light-weight 

cover system was conducted at the University of Utah’s Department of Civil and 

Environmental Engineering in Salt Lake City, Utah. Exploratory numerical modeling was 

conducted during the summer of 2007 using a grant provided by Questar Gas Company  

Subsequently, a more comprehensive research plan was developed for Questar and 

Bechtel Corporations and a jointly funded project began in the spring of 2008 when 

laboratory testing commenced. The full-scale tests began in the summer of 2008 and the 

subsequent analyses and evaluation activities ended in May 31, 2009.  

Bechtel Corporation also provided personnel services to model a case of a strike-slip 

fault using full-scale test results from a series of trench box experiments that were 

conducted at the University of Utah. The modeling evaluations performed by Bechtel 

Corporation are not included herein and the conclusions of this report are independent of 

the efforts of Bechtel Corporation.  

All Expanded Polystyrene (EPS) Geofoam used in this research was donated to the 

University by ACH Foam of Murray, Utah. 
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This research project had six phases. The first phase was an evaluation of the material 

properties of Expanded Polystyrene (EPS) Geofoam. The strength, stiffness, large-strain 

and cyclic behaviors of various EPS Geofoam density were investigated. The second 

phase was a laboratory-scale experiment that explored the 2D and 3D interactions as a 

pipe was pushed downward into an EPS block in unconfined axial compression. The third 

phase consisted of a series of full-scale tests of a buried pipe being pushed laterally by a 

hydraulic actuator into various thicknesses of EPS Geofoam that had been placed and 

buried in a steel-walled trench box. This was done to replicate strike-slip faulting or other 

modes of horizontal ground displacement within the trench. The fourth phase was a series 

of full-scale field tests that compared the uplift performance of an EPS Geofoam cover 

system with a traditional backfilled trench. A 890-kN capacity crane was contracted to 

perform these uplift tests. The fifth phase of this research project was a numerical 

evaluation of the various laboratory and full-scale tests.  The sixth and final stage of the 

research was an exploration of the effects of an asphalt pavement constructed atop the 

cover system. 
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CHAPTER 1 

 

 REVIEW OF LITERATURE 
 

Manufacturing of EPS Geofoam 

Expanded Polystyrene (EPS) is a manufactured plastic product made by expanding 

plastic beads in a block mold. In the manufacturing process, small, expandable 

polystyrene beads (diameters from 0.2 to 3.0 mm) are preheated, which causes expansion 

of the bead due to the pentane gas found at their core.  These expanded spheres (called 

pre-puff) contain numerous closed cells that have an expanded diameter which is about 

three to four times greater than the initial bead size. In the second stage, the pre-puff 

beads are furthered expanded by steam heating in a fixed, steel-walled mold.  During this 

latter heating, the beads are further expanded and coalesced to produce relatively rigid 

blocks of various sizes (Athanasopoulos, 1999).  These blocks can be used as EPS 

Geofoam for construction applications, or they can be further cut and shaped for various 

packaging and insulation purposes. 

 

Advantages of EPS 

There are two primary advantages that EPS Geofoam has over traditional earthen 

materials when used for geotechnical applications. The first advantage is the relatively 

low mass density of EPS, which typically ranges from about 10 to 40 kg/m3. This 
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advantage is useful in reducing the vertical and horizontal stresses on buried structures, 

utilities and compressible soils. The use of light-weight fill reduces the settlements 

caused by geotechnical construction and its potential damage to adjacent structures and 

facilities. The first documented use of EPS for light-weight roadway embankment was in 

Norway in 1975 (Negussey, 2006).  Since then, numerous EPS Geofoam construction 

projects have been carried out, mainly in Japan, Scandinavia and North America.  Of 

importance to the Salt Lake Valley was the light-weight application of EPS Geofoam 

used for embankment construction atop soft clays during the I-15 Reconstruction Project 

from 1998 to 2001.  In this application, the EPS was used to reduce consolidation 

settlement in the foundation soils (Bartlett et al., 2000; Farnsworth and Bartlett 2008).  

The light-weight nature of Geofoam has also been used to reduce soil pressures on buried 

culverts (Kentucky DOT, 2004) and to decrease static lateral earth pressure against 

buried walls (Negussey and Sun, 1996).  Lastly, EPS Geofoam has been used in the 

mitigation strategy for landslides and to improve slope stability of embankments 

(http://Geofoam.syr.edu/GRC_rt23a.asp). 

The second advantage of EPS Geofoam is its use as a ‘compressible inclusion’ for 

systems undergoing static, monotonic and dynamic loadings (Horvath, 2005).  Upon 

stress application, Geofoam is somewhat compressible and controlled compression can 

be used to reduce earth pressure against buried structures as well as deformation induced 

by structural loadings. The loadings that cause compression may include static and 

dynamic lateral earth pressures (Bathurst et al., 2007), swell and frost-heave pressures, 

settlements of support soils, faulting, liquefaction, landslides and traffic loads (Zou et al., 

2000).  
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Typical Properties and Behavior of Geofoam  

     Extensive laboratory testing has been done to establish the properties of EPS Geofoam 

under static load conditions. Many researchers have presented elastic and volumetric 

material parameters for EPS. In short, typical densities of EPS block that are 

manufactured in the U.S. range from 10 to 40 kg/m3.  (The density of the manufactured 

EPS in kg/m3 is used in naming Geofoam block.  For example, EPS19 is the name given 

to EPS Geofoam that has a nominal density of 19 kg/m3.)  This weight is approximately 

one% of the density of soil.  Because of its extremely light-weight nature and cellular 

structure, the void ratio of EPS varies from 40 to 100, compared to typical void ratios for 

soils of 0.5 to 1. However, despite its light-weight and extremely high void ratio, EPS is 

moderately stiff in the elastic range, and not significantly compressible under typical 

loads encountered in most field and embankment applications.  The Young’s modulus 

from full-block tests on EPS ranges from about 10 MPa for EPS19, and is greater for 

higher EPS densities (Negussey, 2006)  For comparison, typical Young’s moduli for 

saturated clayey soils range from about 5 MPa to 20 MPa (Negussey, 2006). 

In addition, when used in roadway applications, EPS Geofoam is often, but not 

always, protected from overstressing by a capping load distribution slab.  This typically 

consists of a 100 to 152-mm reinforced concrete slab that is poured directly atop the 

Geofoam. Its function is to distribute the tire loadings over a larger area; hence, 

overstressing of the Geofoam is avoided.  Thus, in roadway applications, the EPS is 

maintained within the elastic range and no plastic deformation occurs.  Also, if elastic 

behavior is maintained, long-term creep of the EPS is also minimized.  For trenches that 
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cross or underlie roadways, the load distribution slab can either be poured in place, or 

constructed of prefabricated panels.  

The elastic range of EPS is approximately between 0 to 2% compressive axial strain.  

Beyond this range, Geofoam yields and behaves plastically and the secant modulus 

remains relatively constant.  However, with continued strain, strain hardening occurs.  

Hazarika (2006) and Horvath (1995) suggest that this occurs at about 60% axial strain in 

unconfined compression. However, no laboratory test results were published to quantify 

the EPS behavior at large strains for the applications invisioned by this research.   

Many researchers have investigated the shear strength properties of EPS Geofoam 

since its initial use. The unconfined compressive strength of EPS has been investigated 

by numerous researchers, which is about 90 to 120 kPa for EPS19 at 10% axial strain.  

The internal angle of friction, shear strength and shear dilatancy behavior have been 

investigated by Hazarika (2006), Shelley and Negussey (2000), Negussey (2006), Xenaki 

and Athanasopoulos (2001) and Chun et al.. (2004). In addition, interface frictional 

properties for Geofoam-soil and Geofoam-structure interactions have been investigated 

by Xenaki and Athanasopoulos (2001), Shelley and Negussey (2001), and Negussey 

(2006).  For cyclic loading, Athanasopoulos et al. (1999) have developed shear modulus 

degradation and damping curves for two commonly-used densities of Geofoam using 

resonant column testing and cyclic uniaxial compression tests. 

 

Geofoam Use in Buried Applications 

The concept of using Geofoam as a “compressible inclusion” between walls or 

foundation elements and a soil mass was conceptualized about 15 to 20 years ago 
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(Horvath, 1991, 1995, 1998, 2000, 2005).  These publications explore this concept by 

simple numerical analyses and conceptual models for estimating the developed static 

earth pressures against buried structures using Geofoam inclusions.  In addition, Reeves 

and Filz (2000) demonstrated that Geofoam-like products reduce compaction induced 

lateral earth pressures on retaining walls using full-scale tests. They also demonstrated 

that such products can reduce cyclic lateral pressures caused by thermal expansion and 

frost expansion on walls.  For the dynamic loads, Bathurst and Zarnani (2006, 2007) have 

used shake table results and numerical modeling to evaluate the effectiveness of EPS in 

reducing lateral earth pressures behind rigid retaining walls.  However, the developed 

numerical approach was relatively simple in that it treated the reinforced mass of the 

retaining wall as a rigid block that was allowed to displace horizontally under cyclic 

loading. 

For pavement and subgrade applications, Zou et al. (2000) showed that lateral 

restraint on EPS Geofoam has little effect on its performance as a pavement sub-base.  In 

fact, they showed that higher deformations were observed in laterally confined blocks 

than in unconfined blocks under repeated traffic type loading.  They also demonstrated 

the need for a load distribution slab to protect the underlying Geofoam when constructed 

with an overlying flexible pavement system. 

Yoshizaka and Sakanoue (2003) investigated EPS Geofoam as a method to reduce 

lateral force-displacement relationships for buried pipelines. They found a 33 to 60% 

reduction in the lateral soil-pipe forces when Geofoam was used as light-weight trench 

backfill for pipe undergoing horizontal displacement. However, Yoshizaka and Sakanoue 

(2003) did not place Geofoam in the sidewalls of the trench, but used it as a light-weight 
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cover to reduce vertical loads.  More recently, Choo et al. (2007) explored the use of 

Geofoam as a cover system for buried steel pipelines subjected to vertical fault offset. 

They used centrifuge testing of scaled models to show the benefits of EPS as a light-

weight material in reducing pipeline stresses undergoing vertical offset. Choo et al. 

(2007) demonstrated that the light-weight cover application of Geofoam can assist in 

reduction of pipeline damage, but they did not address the compressible inclusion effects 

of the Geofoam cover in reducing the stresses. 

 

Summary of Current Design/Evaluation Methods 

Except for the scaled-model evaluations of Choo et al., (2007), relatively little 

research has been done to investigate the effects of vertical offset caused by normal 

faulting on buried steel pipelines (MCEER, 1999). 

However, considerable work has been done for the case of rigid steel pipelines 

undergoing horizontal offset from strike-slip faults, liquefaction-induced lateral spread 

and slope failure. Newmark and Hall (1975), Wang and Yeh (1985), and Kennedy et al. 

(1979) developed solutions for the stresses and strains imposed on a steel pipeline by 

permanent ground deformations. Their solutions were for horizontal or axial deformation.   

For normal fault offset and its impact to pipelines, ASCE TCLLE (1985), MCEER 

(1999) and ASCE-ALA (2001-2005) recommend using the Newmark and Hall (1975), 

Kennedy et al. (1979) and Finite Element Method (FEM) approaches for evaluating 

vertical movements. (ASCE TCLLE, MCEER and ASCE-ALA recommend that finite 

element method (FEM) and elastic methods are best suited for horizontal movements and 

are applicable to cases where the pipeline is buried sufficiently deep so as not to reach 
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ground surface.)  In addition, ASCE TCLLE (1984), MCEER (1999) and ASCE-ALA 

(2005) recommend using Trautmann and O’Rourke (1985) soil-pipe springs. 

Despite these advances in evaluating pipelines undergoing horizontal displacement, 

ASCE TCLLE, MCEER and ASCE-ALA recommend that pipeline crossings of normal 

faults require further investigation. Essentially no published research has been performed 

on the evaluation and design of EPS Geofoam as a cover system for controlled (i.e., 

engineered) pipe uplift during vertical permanent ground deformations. It should be noted 

that Yoshizaka and Sakanoue (2003) used EPS block as a method of reducing vertical 

stress and therefore horizontal force-displacement reactions for horizontal PGD, but did 

not examine the controlled uplift case to mitigate potential pipeline damage.   

 

Recent Advances in Numerical Modeling of Pipe Displacement 

Perhaps numerical modeling offers the best method of evaluating complex 

Geofoam/soil/pipe interactions. The finite element method (FEM) has been used 

extensively to model horizontal permanent ground deformations and their effects on 

buried steel pipelines (Takada, 2001 and Desmond et al., 1995).  Recently, Karamitros et 

al. (2007) used the FEM to develop a strike-slip model for pipelines crossing active faults 

based on the earlier work of Wang and Yeh (1985) and Kennedy (1979). 

Trautmann and O’Rourke (1985) demonstrated that lateral and vertical movements of 

pipes through soil are essentially the same as for flat anchor plates undergoing lateral or 

vertical movements in soils. Their findings were confirmed by Cheuk et al. (2005). The 

objective of both Trautmann and O’Rourke and Cheuk et al. was to develop soil-pipe 

interaction Winkler springs for FEM modeling. The Winkler (1867) spring approach is 
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based on developing relations that assume the soil and structure will interact as a non-

damped uncoupled spring. Soil spring constants are generally dependent upon the 

sectional configuration and the dimensions of an underground structure, rigidity of soil 

deposits, direction of loading and boundary conditions (Matsubara and Hoshiya, 2000).  

There are several constitutive models that can be implemented in finite element 

methods (FEM) or finite difference methods (FDM) to simulate the stress-strain behavior 

of soils (e.g., hyperbolic, bilinear, double-yield, Mohr-Coulomb, etc.).  Some of these 

may be applicable to modeling Geofoam behavior depending on the anticipated strain 

range of the soil-Geofoam system. 

One of the most widely used constitutive models is the ‘hyperbolic’ model, in which 

the stress-strain relationship is elastic in the low strain range and nonlinear at higher 

strains that are less than 25%.  Konder (1963) proposed the first hyperbolic model. 

Subsequently, the hyperbolic nonlinear elastic mathematical model for soil-soil 

interaction was fully developed by Duncan and Chang (1970) and Duncan et al. (1980). 

For soil-structure interaction problems, Clough and Duncan (1971) showed that a 

hyperbolic model could be used to simulate the soil-structure interaction for lateral earth 

pressures on retaining walls. Gomez et al. (2003) extended the soil-structure interface 

hyperbolic model past the Clough and Duncan version and demonstrated its 

reasonableness for soil-structure interaction problems. Duncan and Mokwa (2001) 

demonstrated that the hyperbolic model accurately predicts the passive earth pressures in 

numerical model/test comparisons.  

For Geofoam applications, the most widely used model is a linear-elastic material, or 

a bilinear elastic material.  For the latter, the initial loading (and unloading) modulus 
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reaches a yield point after some degree of elastic strain; following this, a secant modulus 

is used to describe the post-yield behavior, which is a line segment with very small 

positive slope that represents a slight strain-hardening. 

Nonlinear models have been developed to describe the post-yield behavior of EPS by 

Chun et al. (2004) and Hazarika (2006). These researchers showed the stress-strain 

relationship is nonlinear elastic and hyperbolic in shape. However, neither of these 

models is applicable for cases where the axial strains are greater than about 20%.  Thus, 

there are very few constitutive models for Geofoam at very large strain. The very large 

strain regime of EPC Geofoam behavior shows dramatic strain hardening which typical 

hyperbolic models cannot describe. The double yield model (Itasca, 2005) and similar 

compressible models which only roughly approximate the large strain behavior have been 

used to model Geofoam behavior at large strain (Hazarika, 2006), but this has not been 

fully validated. 

 

11



 
 

  

  

  
CHAPTER 2 

 

 EXPLORATORY WORK 
 

During the summer of 2007, Questar Gas Company requested that the University of 

Utah evaluate a conceptual EPS Geofoam cover system for a 610-mm steel, natural gas 

transmission pipeline crossing the Wasatch fault in Salt Lake City, Utah. The Wasatch 

fault is a normal fault, and the expected fault offset is about 2 m of dip slip (i.e., 

downward) displacement. The fault rupture is expected to produce a M7.0 to 7.5 

earthquake in the Salt Lake Valley. For additional information beyond that presented in 

this report, see Lingwall and Bartlett (2007).  This exploratory modeling was done as 

“proof-of-concept,” and is refined in later chapters of this dissertation using the 

laboratory and field experimental data that are presented subsequently. This work had no 

verification to testing or case histories. The purpose of the dissertation was to provide the 

verification and validation to the numerical modeling concept. 

 

Geofoam Properties Used in Numerical Modeling 

A series of numerical simulations were performed using the general finite difference 

method (FDM) computer program named Fast Lagrangian Analysis of Continua 2D 

(FLAC 2D) (Itasca, 2005).  Each material within FLAC was modeled as a Mohr-

12
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Coulomb material, which treats the material as elastic for states of stress below the yield 

surface and as plastic for states of stress above the yield surface. 

The EPS properties most important for the numerical modeling are the density, 

stiffness and compressive strength (Table 1). Typically, the density of EPS Geofoam 

ranges from about 10 to 40 kg/m3; however, for roadway applications (i.e., where the 

trench crosses or is under a roadway) EPS19, or higher densities, is recommended based 

on the work performed on the I-15 Reconstruction Project (Bartlett et al. 2000).  The 

minimum density specified by the Utah Department of Transportation standard drawings 

for EPS Geofoam placed under pavement systems is EPS19.  Thus, EPS19 properties 

were used in the models developed in this section. 

 

Table 1. Material properties used in exploratory modeling 

 

 
 

Material γ E ν φ’ c’ ψ 

------------- kN/
m3 MPa ---------- deg kPa deg 

Asphalt Pavement 145 3450 0.40 0 14500 0 

UTBC 140 75 0.35 42 0 6 

Load Distribution 
Slab 150 9570 0.20 0 29000 0 

Bedding Sand 125 38 0.35 35 0 6 

Native Sand 135 41 0.35 35 0 6 

EPS Geofoam 1.3 12 0.10 0 250 0 
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 Modeling Approach 

There were two different numerical models developed in the preliminary evaluation 

approach:  transverse and longitudinal. The transverse model consisted of a 2D transverse 

cross section of a hypothetical 0.6-m diameter pipeline and trench (Figure 1). The 

transverse model was used to determine force displacement functions (nonlinear springs) 

in the cover system during pipeline uplift using an approach similar to that of Trautmann 

and O’Rourke (1985). Results from the transverse model were then used in the 

longitudinal model to estimate the axial, shear and bending stresses, moments, and strains 

on the pipeline during and after vertical fault offset. 

The transverse and longitudinal models were analyzed with two cases:  (1) sand cover 

and bedding and (2) EPS Geofoam block cover and bedding. These will be referred to as 

the sand and Geofoam cover systems, respectively, for convenience. The sand cover 

system was model and then compared with the results from the Geofoam cover system to 

determine the reduction in stress obtained from the use of Geofoam in the system.   

     The sand cover system consists of (bottom to top):  0.7 m of bedding sand, 0.6-m 

diameter steel pipe, 1.4 m of sand cover, 0.3 m of untreated base course (UTBC) and 0.2 

m of asphalt pavement.  The Geofoam cover system consists of 0.7 m of bedding sand, 

0.6-m diameter steel pipe, 0.1 m of sand cover, 1.2 m of Geofoam block, 0.1 m thick 

reinforced concrete load distribution slab (LDS), 0.3 m of UTBC and 0.2 m of asphalt 

pavement. For the latter system, the 0.1-m thick sand cover atop the pipe is required for 

the cathodic protection system of the pipeline.  
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Transverse Model 

     Trautmann and O’Rourke (1985) showed that for plane-strain conditions, the force-

displacement behavior of a buried pipe in uplift is essentially the same as that of a plate 

in uplift. Thus, the pipe geometry shown in Figure 1 was simplified to a rectangular box 

(Figure 2) that was more computationally efficient.   

     A constant uplift velocity was applied in the numerical model to the box to represent 

the pipe and load distribution slab as they are forced upward into the cover system. The 

load distribution slab is approximately 1 m wide, thus the width of the rectangular 

matches this dimension. 

     The first step in exploratory FLAC modeling was to analyze a transverse cross-section 

model (i.e., plane-strain model) to capture the uplift behavior of the pipeline as it was 

forced upward through the cover system. The force-displacement relations were 

calculated at various points within the cover system to capture the nonuniform strains that 

developed at various points within the Geofoam cover system. The ultimate uplift 

capacity of the sand cover system from the FLAC transverse model is approximately 5.5 

MPa (Figure 3).  Similarly, the uplift capacity of 1.4 MPa for the Geofoam cover system 

is shown in Figure 4. Thus, the use of EPS block atop the pipe appears to have reduced 

the vertical stress in uplift by approximately a factor of 4, which in turn, is beneficial in 

reducing the shear and bending stresses that develop in the pipe during following normal 

faulting. The numerical model indicated that covering the sides of the Geofoam block 

with a geomembrane will further reduce the vertical uplift stress by reducing frictional 

forces between Geofoam and the trench sidewall.  In addition, placing a geomembrane 

around the Geofoam block will provide added protection against petroleum spill. The  
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light-weight Geofoam cover provides an additional benefit because it can accommodate 

more vertical movement before a failure state is reached. The compressive strain required 

to reach the ultimate stress is about 20 to 60% for the Geofoam cover system (Figure 4) 

and only about 7% for the sand cover system (Figure 3). The higher compressive strain 

allowed by the Geofoam system will also reduce the potential damage to the pipe. 

Figures 5 and 6 show the sand and Geofoam cover systems developed an ultimate uplift 

force of about 5 MN and 1.6 MN, respectively.  Thus, in terms of total force per 1 m 

length of pipe, the Geofoam cover system reduces the maximum uplift force by a factor 

of about 3.  

     The deformation pattern of the Geofoam cover system during uplift is shown in Figure 

7.  This figure also shows the compressible inclusion concept where the Geofoam has 

been considerably compressed. Such action reduces the interaction stress between the 

pipe and cover system and reduces the deformation in the overlying layers.  However, no 

strain hardening was used in this preliminary model, thus the plastic deformations 

increased at a constant rate after yield. (This modeling convenience will tend to overstate 

the efficiency of the compressible inclusion.) The compressible inclusion concept will be 

further evaluated using laboratory and field testing, as discussed later. 

 

Longitudinal Model 

     The longitudinal FLAC model (Figure 8) requires the force-displacement relations in 

Figures 5 and 6 to define the vertical spring stiffness used in the longitudinal model.  

These results shown in these figures were coded into the FLAC program using FLAC’s 
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programming language. The longitudinal model is 130 m long with 1030 beam elements. 

The normal fault was placed at the 100 m mark in the model and a vertical offset was 

forced on a vertical line at this mark.  The right 30 m of the model was displaced 2 m 

upwards to create the fault offset. As was done for the transverse model, the longitudinal 

model had two cases:  one model with the vertical spring constants applicable to a sand 

cover and another with vertical spring constants representing the Geofoam cover system. 

Figure 9 shows the moments induced by fault offset on the pipeline with the sand 

cover system at failure of the pipeline.  The maximum moment was 1.35 x 108 Nm.  This 

model also shows that the maximum allowable offset was about 0.6 m, beyond which 

yielding of the pipeline occurs.  Similarly, Figure 10 shows a moment of about 9.0 x 107 

Nm after about 2 m of vertical offset, which is a typical offset expected on the Wasatch 

fault in Salt Lake Valley.  This model indicates that the fault can displace about 2.5 m 

before the pipeline reaches its yield condition. This marked improvement realized in the 

displacement behavior of the Geofoam cover system was caused by the lower vertical 

stiffness and light-weight properties of this Geofoam cover system.  In contrast, the 

vertical stiffness of the sand cover system is approximately an order of magnitude higher 

as shown by comparing the slopes of the force-displacement plots given in Figures 5 and 

6. The vertical spring relation calculated from the FLAC results for the transverse model 

of the Geofoam cover system (Figure 6) plays a vital role in determining the stresses in 

the pipeline; thus, simplified methods were also used to estimate the value for this spring 

and compared with the FLAC results.  Table 2 shows vertical spring constant values (Kv) 

from various methods with those predicted by the FLAC model. Vesic’s method 

(MCEER, 1999) compared well with the FLAC results for the cases that were analyzed.  

25



 
 

 

 

Fi
gu

re
 9

.  
Pi

pe
lin

e 
m

om
en

ts
 (N

-m
) a

t p
ip

e 
yi

el
di

ng
 fo

r s
an

d 
co

ve
r s

ys
te

m
   

  F
LA

C
 (V

er
si

on
 5

.0
0)

   
   

  

LE
G

E
N

D

   
 9

-J
ul

-0
7 

 1
4:

34
  s

te
p 

   
 2

24
07

  8
.6

85
E

+0
1 

<x
< 

 1
.1

25
E

+0
2

 -7
.7

12
E

+0
0 

<y
< 

 1
.7

93
E

+0
1

G
rid

 p
lo

t

0
 5

E
  0

   
   

B
ea

m
 P

lo
t

M
om

en
t  

   
 o

n
S

tru
ct

ur
e 

   
  M

ax
. V

al
ue

# 
1 

(B
ea

m
 ) 

   
 -1

.3
49

E
+0

8

-0
.5

00

 0
.0

00

 0
.5

00

 1
.0

00

 1
.5

00

(*
10

^1
)

 0
.9

00
 0

.9
50

 1
.0

00
 1

.0
50

 1
.1

00
(*

10
^2

)

JO
B

 T
IT

LE
 : 

S
an

d 
O

nl
y 

M
om

en
ts

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   

B
re

t L
in

gw
al

l -
 U

of
U

 C
VE

E
N

   
   

 
   

   
   

   
   

   
   

   
   

   
   

26



 
 

 

 
Fi

gu
re

 1
0.

 P
ip

el
in

e 
m

om
en

ts
 (N

-m
) a

ft
er

 2
 m

 o
ff

se
t w

ith
 G

eo
fo

am
 c

ov
er

 s
ys

te
m

 

  F
LA

C
 (V

er
si

on
 5

.0
0)

   
   

  

LE
G

E
N

D

   
 9

-J
ul

-0
7 

  9
:5

0
  s

te
p 

   
 3

06
66

  8
.6

85
E

+0
1 

<x
< 

 1
.1

25
E

+0
2

 -7
.7

12
E

+0
0 

<y
< 

 1
.7

93
E

+0
1

G
rid

 p
lo

t

0
 5

E
  0

   
   

B
ea

m
 P

lo
t

M
om

en
t  

   
 o

n
S

tru
ct

ur
e 

   
  M

ax
. V

al
ue

# 
1 

(B
ea

m
 ) 

   
  9

.0
20

E
+0

7

-0
.5

00

 0
.0

00

 0
.5

00

 1
.0

00

 1
.5

00

(*
10

^1
)

 0
.9

00
 0

.9
50

 1
.0

00
 1

.0
50

 1
.1

00
(*

10
^2

)

JO
B

 T
IT

LE
 : 

G
eo

fo
am

 M
om

en
ts

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

B
re

t L
in

gw
al

l -
 U

of
U

 C
VE

E
N

   
   

 
   

   
   

   
   

   
   

   
   

   
   

27



 
 

 

Table 2. Vertical spring comparisons 

 

Recommendations from Preliminary Evaluations 

The exploratory evaluations discussed in this section suggest that an EPS Geofoam 

cover system offers a substantial benefit in improving the expected uplift performance of 

steel pipelines that cross normal faults.  When compared with a sand cover system, the 

pipeline covered by the Geofoam system can undergo approximately 4 times greater 

vertical displacement before pipe yielding is predicted. 

The preliminary modeling suggests that placing a geomembrane in the sidewalls of 

the trench and in contact with the Geofoam can further reduce the uplift forces in the 

system and improve its efficiency.  It was recommended that this be considered for future 

design and construction. 

The findings of this section are based on numerical modeling of a conceptual design 

and appear to be reasonable when compared with simplified approaches.  However, it 

Method Pu Zu Constant Kv 

----------- kN/m M ----------- kN/m 

ASCE – Sand 114 0.025 2 9120 

FLAC – Sand NA NA NA 25000 

Vesic - Sand NA NA NA 28500 

ASCE – Geofoam 504 0.061 2 16520 

FLAC – Geofoam NA NA NA 2890 

Vesic - Geofoam NA NA NA 3298 
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was recommended that additional laboratory and field testing be conducted to calibrate 

and verify the numerical results by constructing a test Geofoam cover system.  This 

additional testing is described in the subsequent chapters of this dissertation.  In these 

tests, a prototype Geofoam cover system was tested in uplift to the failure state.  In 

addition, it was recommended that additional laboratory testing be performed on 

Geofoam and asphalt to support the evaluations.  During a seismic event, the Geofoam is 

strained at a very rapid rate (in the order of milliseconds) as the fault is offset; no 

experimental data for Geofoam is available at such high strain rates. Because EPS 

Geofoam is stiffer when strained rapidly, further research is required to quantify this 

effect.  For the purposes of this preliminary evaluation, a 30% increase in stiffness was 

assumed.  In addition, the behavior of the asphalt pavement in a buckling uplift failure 

needs to be quantified. 

It was also recommended that the cover system be further analyzed using 3D finite 

element or difference programs such as FLAC-3D. A 3D approach has several 

advantages over a 2D approach. A 3D model allows for application of internal pipeline 

pressure, exploration of effects of elbows and T-connections where needed, and allows 

for the use of more advanced structural elements such as shell elements. The more 

advanced structural elements that compose the pipeline allow for more precise 

predictions of pipeline curvature, shear, moments and axial strain.    

It was also understood that Questar Gas Company had interest in the potential use of 

Geofoam to reduce pipe stress resulting from lateral (i.e., horizontal) permanent ground 

displacement. This type of ground displacement can be caused by land-sliding, 

liquefaction-induced lateral spread and horizontal (i.e., strike-slip) fault movement.   
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CHAPTER 3 
 

 EPS GEOFOAM TESTING 
 

A series of laboratory unconfined compression tests were performed on EPS 

Geofoam of varying nominal densities. Two series of tests were performed. The first 

series consisted of uniaxial monotonic axial compression tests on 152-mm diameter 

cylinders. Samples of EPS15, EPS22 and EPS39 (i.e., 15, 22 and 39 kg/m3, respectively) 

were used. The second series of tests consisted of uniaxial monotonic compression tests 

on 608 x 608 x 813-mm blocks. The second series of tests used the same densities as the 

first. All tests were performed using computer controlled load devices with electronic 

data acquisition of force and displacement. 

A variety of strength and stiffness properties for EPS Geofoam were found from the 

two series of tests. These properties are summarized and recommendations are made 

regarding which properties are appropriate for different loading and design situations. 

 

Test Equipment 

The monotonic uniaxial compression tests on the 152-mm diameter EPS cylinders 

were conducted using a GeoComp test apparatus. The GeoComp system includes a load 

frame, LVDT, S-Type Load cell and computer control/data acquisition software. A load 

frame LOADTRACK II load device and data acquisition system are shown in Figure 11.  
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Figure 11. GeoComp test apparatus, courtesy of GeoComp Corporation 
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The 608 x 608 x 813-mm block tests were conducted using the University of Utah 

Civil and Environmental Engineering Department load frame, which was designed for 

testing full-sized structural beams and columns. The lower portion of this load frame is 

shown in Figure 12. The entire load frame is over 9 m high, and was not photographed.  

This large load frame utilizes MTS electronic control and data acquisition. The 

actuator ram has a maximum capacity of 8900 kN with a stroke of 608 mm. The 

maximum displacement rate for the ram was 1.2 m/min. The ram is powered by a MTS 

pneumatic pump with computer controlled manifold and servo. Feedback for the system 

was through the displacement transducer, and the tests were displacement controlled. The 

load cell used was a 4450 kN Houston Scientific rod-end type load cell with an accuracy 

of +/-0.1%. The displacement transducer was a Temposonics brand magnetic slider 

displacement transducer. The MTS control equipment monitored the forces and 

displacements with a sampling interval of 0.5 sec. This load frame was chosen due to the 

large size of the load platform, large enough for the 608x813 mm base of the EPS blocks 

as well as sufficient stroke to take the EPS Geofoam to extremely high strains at a strain 

rate of 100%/min. The Geofoam specimens were compressed between two 13 mm steel 

plates mounted to the ram and load frame. 

 

Test Procedures 

Before any tests were performed, the specimens were measured and weighed to 

confirm that the specimens meet the minimum density specifications for their nominal 

EPS density according to ASTM D6817-02, Standard Specifications for Rigid Cellular 

Polystyrene Geofoam. Note that ASTM D6817-02 specifies that compression tests and 
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Figure 12. Large load frame for EPS block tests at full stroke 
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compression properties should be conducted on 50 mm cube specimens. These small 

samples were not used in this test program, because of their small size which may not 

represent the true stiffness and strength of full-sized EPS block in situ. 

     For a baseline comparison of the minimum compressive resistances of EPS Geofoam, 

see Table 1 of ASTM D6817-02, which is based on unconfined compression testing 50-

mm EPS cube samples. It is important to note that the specifications in ASTM D6817-02 

are only for minimum densities and compressive resistances for a specific EPS density. In 

reality, a given test specimen may have a higher density than the nominal density and 

often a higher compressive resistance than values given in ASTM D6817-02.  Thus, the 

properties of EPS for a given application should be obtained and verified by laboratory 

testing that is appropriate for the loading conditions and scale of the application.  

After specimens were measured and weighed, the cylinders for the uniaxial tests were 

trimmed on the ends in a miter-box with hot-wire cutter to assure that the ends were 

square before testing. The 608 x 608 x 813 mm blocks were factory trimmed. Each 

specimen was then placed on the bottom platen of the loading device. 

For the monotonic uniaxial compression tests, the top platen was placed on the top of 

the specimen. The load platform was raised slowly into position until the specimen was 

loaded with a very small axial seating load (less than 2 N). The data acquisition was 

started and the specimens were compressed vertically in unconfined axial compression 

according to the loading rate programmed into the computer control module. At the end 

of the stroke of the actuator, the specimens were temporarily unloaded and a steel plate 

spacer was inserted below the specimens.   
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The compression of the specimen continued again to the end of the stroke. This 

process was repeated in some instances depending on the amount of compression of the 

specimen after the first reloading cycle.  

For the 608 x 608 x 813 mm size block monotonic uniaxial compression tests, the 

large loading frame (8900 kN capacity) with its attached upper load platen (made from 13 

mm steel plate) was lowered into place slowly until a small seating load (less than 40 N) 

was applied. The test was then started using the computer control system with a pre-

specified vertical displacement rate. The specimen was compressed in vertical, confined 

compression without stopping until 90% axial strain, or greater, was achieved.  Strains 

rates of 10 to 62.6% were performed to see if this had an effect on the material behavior.  

After loading was finished, the specimen was unloaded and removed from the large 

loading frame. Figure 13 is a photograph of a specimen in the large loading frame prior to 

compression of the specimen. Figure 14 shows the same specimen midway through 

compression testing at a strain of about 50%. Figure 15 shows the same specimen at the 

end of compression at about 90% vertical (i.e., axial) strain. 

 

Monotonic Uniaxial Tests on Cylindrical Samples 

Test Specimens 

     A total of 21 EPS cylindrical specimens were obtained from ACH Foam Products of 

Salt Lake City, Utah. These specimens were 152 mm in diameter and 152 mm in height. 

Three densities of Geofoam were obtained with 7 specimens obtained for each respective 

density. The nominal densities of EPS Geofoam used in these tests were EPS15, EPS22 

and EPS39. Each specimen was measured and weighted to determine the actual density 

of the specimen.  
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     All of the specimens were tested as part of the test program; however, some of the 

tests experienced problems and were not included in the test results.  Some tests were 

rejected because the specimen did not deform uniformly in compression, causing the load 

platens to press at angles greater than 10� from horizontal.  (If the load platen tilts 

excessively, the location and angle of the resultant force changes, leading to an increase 

of localized straining of the Geofoam cylinder.) Such tests were rejected due to the lack 

of reliability in the stress-strain data obtained from the angled loading condition.  

The details for the acceptable tests are shown in Table 3.  It can be seen from these 

results that for EPS39, the actual density was 57.2 kg/m3, which was 47% denser than the 

nominal value.  (This can be compared to the samples of EPS15 and EPS 22, which were 

6% and 18% more dense, respectively, than the nominal density.) This density 

discrepancy between the actual and nominal values should be considered for design and 

installation of Geofoam block because EPS material properties are more closely 

correlated with the actual and not the nominal values.  

The specimens shown in Table 3 were compressed at a variety of strain rates ranging 

from 3.3%/min to 26%/min to see if any strain rate effects could be observed. Note that 

the ASTM D6817-02 standard strain rate is 10%/min, which was performed as well for 

each Geofoam density. 

 

Results 

From the stress-strain plots of the test data, several material properties were 

calculated: initial tangent modulus, modulus to the yield stress, unloading and reloading 

moduli, yield stress, strain at yield and the stress level for a number of axial strains (1%,  
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Table 3. Monotonic uniaxial test specimen measurements and strain rates 

Test Nominal 
Density 

Measured 
Density 

Initial 
Diameter 

Initial 
Height Strain Rate 

----------------- kg/m3 kg/m3 mm mm %/min 

3 15 15.9 150 150 10.0 

5 15 15.9 150 152 12.5 

6 15 15.9 150 1515 22.5 

7 15 15.9 150 151 3.3 

12 15 15.9 150 150 3.3 

8 22 25.9 150 152 10.0 

9 22 25.9 150 150 16.5 

10 22 25.9 150 152 10.0 

11 22 25.9 150 152 26.0 

14 22 25.9 150 150 3.3 

15 39 57.2 153 153 16.0 

16 39 57.2 153 153 3.3 

17 39 57.2 153 151 20.0 

18 39 57.2 153 150 26.0 

19 39 57.2 153 150 10.0 

 

5%, 10%, 15% and 30%). The initial tangent modulus was determined by drawing a best-

fit tangent line to the initial straight portion of the stress-strain curve. For several of the 

test results, the line was drawn after an initial upward curved portion of the stress-strain 

plot had become linear. This initial upward curved portion of the relationship is from 

seating effects of the Geofoam material. This was not observed in every test, but where it 

did occur, the results were adjusted to fit them with the elasto-plastic model used. See the 

results for cylinder test 15 in Figure 16 for a visual representation of this phenomenon.  
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The modulus to the yield stress is a secant modulus from the initial condition through the 

yield stress. This was found by dividing the yield stress by the yield strain.  

For the purposes of this research, the unloading modulus was defined as the peak 

stress divided by the total remaining strain in the specimen just as the load on the 

specimen reaches zero. This is a secant modulus, and does not represent the actual 

unloading behavior, only a representation of the net unloading results. More details on 

the reasoning for this definition are presented in the discussion following these results. 

The reloading modulus was similar; it was taken as the best-fit tangent line between the 

beginning of the reloading path and the end of the straight line portion of the reloading 

curve. 

The yield stress of EPS Geofoam is not clearly defined in the literature. It is 

occasionally defined as the stress at which the straight line initial portion of the stress-

strain curve ends. Other researchers have stated that it is the stress found at the 

intersection of two tangent lines, one for the initial linear portion of the curve, and 

another for the straight line elasto-plastic portion of the curve above the yield stress. 

NCHRP (2001) describes the yield stress as the stress on the stress-strain curve at the 

same strain as found by the intersection of the two best-fit tangent lines stated previously. 

In this report, the yield stress was defined in the same way as that of NCHRP (2001). 

The results for the different monotonic load tests are summarized in Table 4. Note 

that not all the tests were reached 30% axial strain. Also, the unloading and reloading 

curves were not reported for all tests because of sample bending effects. Figure 16 shows 

a visual representation of the results of EPS Geofoam testing, the definitions of various 

engineering parameters are shown graphically.  
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Table 4. Six inch cylinder test results 

 

Test Eit Eys Eu Er σy εy σ1% σ5% σ10% σ15% σ30% 

----------- kPa kPa kPa kPa kPa % kPa kPa kPa kPa kPa 

3 2500 2091 NA NA 46 2.2 24 60 70 78 100 

5 4000 3333 1915 NA 50 1.5 38 70 83 89 NA 

6 2310 2313 1620 NA 74 3.2 23 75 88 99 126 

7 2105 2000 1667 1263 60 3.0 26 74 89 99 NA 

12 2500 1600 2170 NA 48 3.0 24 62 72 80 NA 

8 7500 4667 1920 1470 140 3.0 17 145 162 176 207 

9 7500 4643 2045 1450 130 2.8 41 146 164 177 209 

10 7778 6100 3000 NA 122 2.0 35 152 168 179 NA 

11 8157 4083 1250 851 122 3.0 33 119 132 141 161 

14 7500 3833 1471 930 115 3.0 32 127 141 151 173 

15 18348 12222 10204 6667 440 3.6 69 341 481 503 NA 

16 17241 13594 12750 10095 435 3.2 76 456 507 NA NA 

17 18811 11936 NA NA 370 3.1 62 365 386 399 427 

18 15873 12258 NA NA 380 3.1 60 374 397 410 440 

19 17094 13750 12683 8518 440 3.2 65 450 504 NA NA 
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Monotonic Block Tests 

Test Specimens 

All block specimens were provided by ACH Foam Technologies of Salt Lake City, 

Utah. Three densities of foam were provided: EPS15, EPS22 and EPS39, which cover a 

wide range of EPS Geofoam densities. The specimen names, densities and strain rates are 

shown in Table 5 for the large blocks that were tested in compression up to the 90% 

strain range. The baseline strain rate of 10 %/min (See ASTM D6817-02) was used as the 

first set of tests. Subsequently, higher strain rates were used to observe if strain rate 

effects could be observed for more rapid strain rates.  

Figure 17 shows an EPS Geofoam block prior to testing in the large load frame.  

Lines were drawn on the specimens to track the pattern of deformations during vertical 

compression as the test progressed. The internal strains could also be shown by these 

lines qualitatively throughout compression of the block.  

 

Results 

From the stress-strain plots, several material properties were calculated. These 

properties are the following: initial tangent modulus, modulus to the yield stress, 

unloading and reloading moduli, yield stress, strain at yield and the compressive 

resistance at various axial strain levels (1%, 5%, 10%, 15%, 30%, 50% and 90%). (The 

initial tangent moduli were determined by drawing a best-fit tangent line to the initial 

straight portion of the stress-strain curve.) For several of the test plots, the initial tangent 

modulus line was drawn after the seating of the sample was completed as was done for 

the 152 mm cylinder tests (Figure 16).  
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Table 5. Monotonic block test program 

 

Test Name Measured 
Density 

Deformation 
Rate Strain Rate 

--------------- Kg/m3 mm/min % / min 

GF 1 39 61 10 

GF 2 22 61 10 

GF 3 15 61 10 

GF 4 39 152 25 

GF 5 22 152 25 

GF 6 15 152 25 

GF 7 39 381 62.5 

GF 8 22 381 62.5 

GF 9 15 381 62.5 

GF 10 39 381 62.5 

GF 11 22 381 62.5 

GF 12 15 381 62.5 
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Figure 17. EPS block before testing in large load frame 
 

 

      The definition of all material properties calculated for the block tests were the same 

as those defined for the 152 mm cylinder tests.  The results for the block tests are given in 

Table 6.  

In Figure 18 it can be seen that the final thickness of a 608 mm block after 

compression was about 2.5 inches (63.6 mm), which corresponds to an axial strain of 

about 90%.  It was also interesting to note that essentially no horizontal bulging of the 

Geofoam occurred during compression (Figure 15), suggesting that lateral deformation 

during axial loading was very small, especially in the plastic and strain hardening range  
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Table 6. 608-mm block test results 

Test Eit Eys σy εy σ1% σ5% σ10% σ15% σ30% σ50% σ90% 

----------- kPa kPa kPa % kPa kPa kPa kPa kPa kPa kPa 

GF 1 15455 12692 330 2.3 129 378 406 423 473 609 3976 

GF 2 7273 6190 130 2.1 75 156 168 178 206 244 1880 

GF 3 3846 2889 52 1.8 37 71 77 81 82 123 1198 

GF 4 13158 15000 360 2.4 159 415 444 465 528 645 4797 

GF 5 7767 6250 150 2.4 71 177 190 199 225 285 2108 

GF 6 1371 2927 60 2.0 35 76 83 86 87 138 1315 

GF 7 14706 13571 380 2.8 120 432 470 494 570 675 4985 

GF 8 15625 13333 400 3.0 128 448 484 506 574 700 5080 

GF 9 7143 5600 168 3.0 45 180 196 205 233 297 2026 

GF 10 6667 6120 153 2.5 66 178 193 200 222 284 2029 

GF 11 3333 2393 67 2.8 25 81 88 91 95 152 1430 

GF 12 2976 2333 70 3.0 25 82 88 91 95 155 1430 
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of the EPS.  Lateral bulging is an indication of Poisson’s ratio in the elastic behavior of 

materials, and of dilation in the plastic behavior of materials. In EPS geofoam, with strain 

gradients, the block, in compression, experiences zones of both elastic compression 

behavior as well as zones of plastic compression behavior. It is likely that at very large 

strains that the entire block is in plastic compression. The presence of no lateral bulging, 

or even necking as was observed in the compression tests, indicates that the dilation of 

the material is possible negative. This warrants future research in geofoam behavior, to 

assess the volume change behavior at large strains, and the plastic volume behavior at 

very large strains. 

 

Test Results 

The results of both the cylinder and large block tests are compared in Table 7 for the 

EPS15 nominal specimens.  Included are the average material properties for the tested 

specimens and a comparison with the ASTM D6817-02 standard minimum specifications 

for the corresponding property. (The ASTM information is presented only for comparison 

purposes because the ASTM standards are based on testing of 50 mm cube specimens.)  

From this table, it was concluded sample size effects in EPS Geofoam can be significant.  

Generally, larger specimens have greater compressive resistance and stiffness when 

compared with smaller specimens. (Sample size effects are best judged by using the 

average of all samples because there is reasonably variability when comparing individual 

test results.)  

For all three of the Geofoam nominal densities tested, our test results exceeded 

ASTM minimum specifications with the exception of a few of the EPS15 cylinder  
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Table 7. EPS 15 test results 

 

 

 

 

 

 

Test Strain 
Rate Eit Eys σy εy σ1% σ5% σ10% σ15% σ30% 

-------- % / min kPa kPa kPa % kPa kPa kPa kPa kPa 

GF 3 10 3846 2889 52 1.8 37 71 77 81 82 

GF 6 25 3571 2927 60 2.1 35 76 83 86 87 

GF 11 62.5 3333 2393 67 2.8 25 81 88 91 95 

GF 12 62.5 2976 2333 70 3.0 25 85 88 91 95 

3 10 2500 2091 46 2.2 24 60 70 78 100 

5 12.5 4000 3333 50 1.5 38 70 83 89 NA 

6 22.5 2310 2313 74 3.2 23 75 88 99 126 

7 3.3 2105 2000 60 3.0 26 74 89 99 NA 

12 3.3 2500 1600 48 3.0 24 62 72 80 NA 

Average ------------- 3016 2431 59 2.5 28 72 82 88 98 

ASTM 
Standard 10 NA 2500 NA NA 25 55 70 NA NA 
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specimens.  It is common that EPS Geofoam blocks are manufacturered to higher 

densities than the ASTM standard minimums. Batch quality control testing at 

manufacture plants typically only verify that the blocks meet the minimum standards for 

the nominal EPS density and verify that the properties do not exceed those of the next 

highest grade. Because of this, project-specific testing of Geofoam is recommended to 

confirm the properties of the Geofoam. The actual block may have properties between 

those of the nominal and the next highest grade of EPS. The project-specific test results 

should also be compared to the design values used in the engineering calculations. Tables 

8 and 9 present the aggregated results for EPS 22 and EPS 39. 

The yield strain, as calculated using the method proposed in this report, varies 

between 2.5 and 3% axial strain with the yield strain increasing with increasing EPS 

density (Tables 7 to 9).  However, the linear portion of the stress-strain curve in the 

elastic range was generally found at strain levels below about 2% axial strain.  This 

suggests that for most EPS specimens, the linear-elastic part of the stress-strain curve is 

below 2% axial strain and the yield strength occurs at about 2.5% strain.  Between these 

values, the behavior is transitional between the elastic and plastic state (Figure 16). 

The compressive resistance at 1% axial strain obtained for the 152 mm cylinder tests 

was consistently equal to or below the ASTM D6817-02 minimum standard for 1% 

compressive resistance.  This effect may be due to the test apparatus and the applied 

seating load not being sufficient to eliminate the occasional curvature in the initial 

portion of the stress-strain relationship (Figure 16).  Results for the 152 mm cylinders and 

608 x 608 x 813 mm block tests showed that the initial tangent modulus is a function of  
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Table 8. EPS 22 test results 

 

 

 

Test Strain 
Rate Eit Eys σy εy σ1% σ5% σ10% σ15% σ30% 

-------- % / min kPa kPa kPa % kPa kPa kPa kPa kPa 

GF 2 10 7273 6190 130 2.1 75 156 168 178 206 

GF 5 25 7767 6250 150 2.4 71 177 190 199 225 

GF 9 62.5 7143 5600 168 3.0 45 180 196 205 233 

GF 10 62.5 6667 6120 153 2.5 66 178 193 200 222 

8 10 7500 4667 140 3.0 17 145 162 176 207 

9 16.5 7500 4623 130 2.8 41 146 164 177 209 

10 10 7778 6100 122 2.0 85 152 168 179 NA 

11 26 8157 4083 123 3.0 33 119 132 141 161 

14 3.3 7500 3833 115 3.0 32 127 141 151 176 

Average ------------- 7476 5273 137 2.6 52 153 168 178 205 

ASTM 
Standard 10 NA 5000 NA NA 50 115 135 NA NA 
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Table 9. EPS 39 test results 

Test Strain 
Rate Eit Eys σy εy σ1% σ5% σ10% σ15% σ30% 

-------- % / min kPa kPa kPa % kPa kPa kPa kPa kPa 

GF 1 10 15455 12692 330 2.6 129 378 406 423 473 

GF 4 25 13158 15000 360 2.4 159 415 444 465 528 

GF 7 62.5 14706 13571 380 2.8 120 432 470 494 570 

GF 18 62.5 15625 13333 400 3.0 128 448 484 506 574 

15 16.5 18348 12222 440 3.6 39 441 481 503 NA 

16 3.3 17241 13594 435 3.2 76 456 507 NA NA 

17 10 18811 11936 370 3.1 62 365 386 399 427 

18 20 15873 12258 380 3.1 60 374 397 410 440 

19 10 17091 13750 440 3.2 65 450 504 NA NA 

Average ------------- 16257 13151 393 3.0 93 384 453 457 502 

ASTM 
Standard 10 NA 10300 NA NA 103 241 276 NA NA 
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EPS density (Figure 19). The coefficient of correlation for the two different sample sizes 

is 0.98, or greater.  We also noted that the 152 mm cylinder tests tend to produce slightly 

higher initial tangent moduli than the 24 608 mm block test, except for the EPS15 

specimens.  The results of this program tend to be somewhat higher than those 

recommended by NCHRP (2004), though not significantly higher. 

The yield stress as a function of nominal EPS Geofoam density for both specimen 

sizes is shown in Figure 20. The 152 mm specimens show a higher yield stress for the 

EPS39 specimens and lower compressive resistance for the EPS15 specimens when 

compared with the 608 mm block specimens. 

These trends were similar to the trends observed in the initial tangent modulus. 

However, there was more scatter for the 152 mm cylinder test result when compared with 

the block results for yield stress as a function of nominal EPS density. The results of this 

program tend to be higher than those recommended by NCHRP (2004), especially at 

higher nominal EPS densities. Figure 21 shows a similar trend for stress at 10% strain.  

For more information on the effects of EPS Geofoam specimen size and compression 

test results, see Elragi et al. (2000). These authors found that 608 mm block EPS 

specimens had much higher modulus than 50 mm cube specimens. Figure 21 shows the 

results from this testing program on 608 mm block specimens. The results of the Elragi et 

al. (2000) test program show higher initial tangent modulus than those found by this test 

program (see Figure 22 with star symbols superimposed on this plot representing test 

results from this program). 
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Figure 22. Specimen size effects on EPS modulus (after Elragi et al., 2000) 
 

  However, Elragi et al. (2000) used internal strain measurements to determine the 

axial strain. The moduli in this study were found by the global deformation of an entire 

EPS block or cylinder. The entire block was measured before, during and after 

compression to assess strain level.  Despite the lower modulus measured by this test 

program, both these test data and those of Elargi et al. (2000) show that larger EPS test 

specimens have higher compressive strength and stiffness when compared with results 

obtained from smaller test specimens. This means that the typical compression of 50 mm 

specimens for quality control and property determination may under estimate actual 

properties. This leads to more conservative designs than planned and may lead to higher 

costs in constructed sections and fills.  
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 Discussion of Test Results 

The large block test specimens clearly show a sigmasoidal strain hardening behavior 

of EPS Geofoam. This behavior involves a significant strength gain of the material 

beyond about 30% axial strain. This finding has important implications regarding the 

efficiency of a compressible inclusion at higher strain levels.  If the EPS block is strained 

to this amount, or greater, as expected for the case of fault offset, the compressible 

inclusion behavior may not be very efficient due to subsequent strain hardening of the 

EPS. Thus, it is recommended that the target strain level be considered in the Geofoam 

applications that involve postelastic straining and the associated compressive resistance 

developed at that level of strain. 

As for the yield stress and stress at 10% strain being larger than those of NCHRP, it is 

unclear if the NCHRP results are a conservative recommendation, or the average of 

actual test data. It is also supposed that the NCHRP testing was done with small cube 

specimens rather than larger cylinders or blocks, which would cause significant 

differences.  

 

Unloading Modulus 

The unloading modulus is simply defined as the slope of the stress-strain curve for 

Geofoam from the end of loading to the end of unloading. The behavior of Geofoam in 

unloading is very nonlinear, so it is difficult to define the unloading modulus due to the 

shape.  For the purposes of this research, the unloading modulus was defined as the peak 

compressive stress divided by the total remaining compressive strain in the specimen at 

the point where the load on the specimen reached zero (Figure 16). This is a secant 
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modulus and does not represent the actual nonlinear unloading behavior. It is only a 

representation of the net unloading results. 

The behavior of Geofoam at peak load is time dependent (i.e., visco-elastic), meaning 

that the longer the specimen is held at the peak load there will be more plastic strain upon 

unloading. In addition, there tends to be a considerable amount of compressive strain 

rebound after the specimen was completely unloaded and the displacement imposed by 

the load frame was removed. This rebound occurs regardless of the length of time that the 

specimen was held at the peak stress. 

Geofoam rebound behavior was difficult to describe mathematically, but was 

observed in every test specimen. In addition, the unloading curve behavior was difficult 

to describe because in the time between the end of loading and beginning of unloading, 

there was significant vertical stress relaxation in the EPS Geofoam as the peak 

compressive strain at the end of loading is maintained. This stress relaxation was 

measured on some occasions.  It was observed that as much as 30% of the peak stress 

was lost in the specimen due to relaxation.  

 

Reloading Modulus 

The shape of the reloading part of the stress-strain curve is approximately linear for 

Geofoam, and so the reloading modulus is also linear (Figure 16). To calculate the 

reloading modulus, a best-fit line is drawn through the reloading data. This testing shows 

that at the same compressive stress level (i.e., after reloading is completed), the 

compressive strain at the end of the reloaded part of the curve was greater than the initial 

loading part of the curve, i.e., an accumulated plastic strain has occurred. The magnitude 
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of plastic strain varies with the elapsed time between reloading and unloading.  It is also 

dependent upon the rate of loading. The visco-elastic behavior of EPS requires further 

research. 

Another important observation is that the reloading modulus for EPS was 

significantly less than the initial loading modulus. In contrast, the reloading modulus for 

soils is usually similar to the initial loading modulus. The test data in Figure 16 show the 

reload modulus was about 50% less than the initial loading modulus. Similar values were 

measured for all EPS specimens tested in unloading and reloading. These unload-reload 

cycles were done at compressive strains greater than the elastic limit on the material; 

hence, the results are influenced by plastic behavior of the Geofoam. It is also noted that 

these unload and reload moduli should not be used for cyclic analyses (e.g., earthquakes 

or machine vibrations) because of the plastic behavior at large compressive strain.  

However, these moduli may be appropriate for smaller compressive strains, such as 

occurs during freeze-thaw and expensive soil loadings. 

 

Strain Rate Effects 

From the plots shown in Figure 22, it is concluded that compressive strain rate has only a 

minor effect on compressive resistance and modulus of EPS, at least for strain rates that 

range between 3% to 62.5%/minute. Figure 22 shows the initial tangent modulus as a 

function of nominal EPS Geofoam density for 4 different strain rates. The baseline strain 

rate of 10%/min, as prescribed in the ASTM D6817-02 standard, was included in the test 

program for comparison purposes. Similarly, Figure 23 shows the yield stress as a 

function of strain rate.  Based on these figures, it was concluded that  
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there is little difference in modulus and yield strength as a function of rate.  However, 

loading from fault offset are essentially instantaneous (i.e., duration of a few to tens of 

milleseconds) and impact loading behavior of EPS needs to be further explored.  

Figure 24 shows the yield stress at various strain rates for three nominal Geofoam 

densities. This figure shows that strain rate effects have little effect on the yield stress, 

though the fastest strain rate did show slightly higher resistance to compression than the 

other three strain rates used in the testing program. If a much higher strain rate was 

possible in the test equipment, the effects may have been more pronounced. This needs to 

be further explored if more rapidly loading test equipment becomes available. 

 

Stiffening of EPS due to Creep Strain 

EPS Geofoam installed in underground and embankments can undergo creep strains. 

This is long-term strain that occurs from the in situ state of stress. Such strain, with 

significant passage of time) will impact the compressive resistance and stiffness of the 

EPS. For example, test results on samples subject to very slow strain rates (i.e., 1%/year) 

show that the compressive strength of EPS increases to values higher than preloaded 

values (NCHRP, 2004).  This creep behavior and its impact on the properties of EPS 

highlight the importance of the visco-elastic nature of Geofoam.   

 

Poisson’s Ratio 

In the elastic range, Poisson’s ratio for EPS is typically relatively low with values of 

about 0.1 for EPS19 (Negussey, 2006).  However, in the plastic range, Poisson’s ratio 
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may actually be slightly negative. (Note that Poisson’s ratio is an elastic property and is 

not strictly applicable to the plastic range.)In the plastic range, a negative dilation angle 

can produce similar behavior. The EPS behavior at large strain can be seen by examining 

Figure 25. This figure shows the shape of a 608 mm block specimen at the end of 

extreme compression.  

     Note that the sidewall of the sample has a concave shape rather than a typical 

convex (i.e., bulging) shape that is observed when soil is compressed. A concave shape 

seen in Figure 25 implies a negative Poisson’s ratio and/or dilation angle, because the 

sample is slightly contracting laterally during axial loading.  This slight concave shape at 

the edge was observed throughout the duration of the test.   

 

Comparison to Published EPS Geofoam Testing 

The test results discussed in the last section of this chapter can be compared with 

published data from other researchers. In particular, it is useful to compare them to the 

NCHRP (2004) report’s findings. Figures 20 and 21 show the lab testing of this 

investigation compared to those recommended by NCHRP (2004).  The trend between 

the testing done in this investigation and that found in the NCHRP recommendations is 

that the two have similar trends for low values of nominal EPS density. As the nominal 

EPS density increases, there is greater divergence between the two trend lines. This is 

mostly due to sample size effects. The NCHRP recommendations were developed largely 

with 50-mm cube specimens, while larger specimens were used in this research. This is 

the same trend as shown in Figure 22 when comparing sample sizes. In short, the finding  
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Figure 25. Shape of EPS block edge at end of compression in large loading frame 
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that increasing the EPS density and/or sample size will cause an increase in the measured 

strength and stiffness properties is still observable in these data and trends. 

 

Mathematical Model of EPS Behavior at Large Strains 

It is most important to evaluate the stiffness of EPS during its compression and uplift 

interaction with the pipe resulting from the displacement event.  It is this stiffness and its 

change during compression that governs the forces that ultimately develop in the EPS 

when EPS blocks are used as a compressible inclusion in a buried interaction application. 

For a standard hyperbolic model for 0 to 30% axial strain, Equation 1 is proposed: 

 

( ) itult E
ba

ba
1

31

+
−

=
+

=�+=

σσ
ε

ε
ε
εσε

σ
ε

                                  (1) 

  

where ε is axial strain, σ1 and σ3 are the major and minor principal stresses, respectively, 

Eit is the initial tangent modulus and a and b are hyperbolic model parameters that are 

determined using a best-fit method to experimental data.  

For axial strains above 30% strain, another hyperbolic form is proposed, but with its 

beginning point matched with the end point of the first hyperbolic model (Figure 26).  

This will be refered to as a “matched double hyperbolic model.”  For axial strains above 

30%, Equation 2 is proposed: 
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where c and d are best-fit hyperbolic model parameters for the second part of the 

complex curve. Thus, for the matched double hyperbolic model, 5 fitted parameters are 

required (a, b, c, d) and a parameter for the match point where the curves connect. To 

adjust for strain rate effects, the test data can be normalized to the strain rate using 

Equation 3: 

 

mm StrainRate
TestStress=

�
�

�
�
�

�
=

•
ε

σσ *                                                  (3) 

where m = 0.05 is used for Geofoam. The stress-strain relationship becomes: 
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,  
 
 

with opposite signs and parameters c and d used for the second part of the model.  It was 

found that the above approach works well for EPS15; however it does not work as well 

for EPS of higher density.  The matched parameters for the EPS15 model are shown in 

Table 10. In Table 10, the match point for the two curves is selected at 30% axial strain. 

This was an arbitrary match point that was chosen after inspection of Figure 26.  

     We also explored the application of a complex hyperbolic model, which is written as 

Equation 5. 
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Table 10. EPS 15 matched hyperbolic model parameters 

Coefficient Value 

a* 0.0123 

b* 0.0234 

c* -0.0084 

d* 08548 
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     In Equation 5, ε is the axial strain in%. This formulation has the advantage that the 

functional form covers the complete stress range; hence, only 4 parameters are required.   

It was found that the complex hyperbolic model performs well for EPS22 and EPS39.   It 

did not provide as good of fit as the matched double hyperbolic model for EPS15, 

although Equation 5 reasonably approximates the EPS15 test data. 

As before, the test data can be normalized for strain rate by, with exponent m, m = 

0.05 for Geofoam as shown in Equation 6, with σ the compressive stress. 

 

mm StrainRate
TestStress=

�
�

�
�
�

�
=

•
ε

σσ *                                           (6) 

. 

and the stress equation becomes Equation 7. 
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In Equation 7, a*, b*, c* and d* are fitted parameters for the complex hyperbolic 

model that has been normalized to strain rate. Values for the complex hyperbolic model 

parameters are shown in Figure 27. These plots show the parameters as a function of 

nominal EPS Geofoam density for both the regular and normalized data from the large 

block tests. Plots of the stress-strain data and the hyperbolic mathematical function can be 

seen in Appendix B.  For reference, Type I Geofoam is EPS15, Type II Geofoam is 

EPS22 and Type III Geofoam is EPS39. Table 11 shows the complex hyperbolic model 

parameters for all three nominal Geofoam densities. Table 11 includes the normalized 

strain parameters. The parameters in Table 11 are all very small, even up to seven orders 

of magnitude less than 1. These values are to be used with equations 5 and 7 to find the 

stress at any imposed strain assuming constant compression and no relaxation in the 

specimen or Geofoam block.  

The value of the d parameters was used to adjust the fit for the initial tangent modulus 

of the Geofoam.  For example, increases in d causes a steepening of the initial portion of 

the curve.  In addition, the value of the c influences the yield stress. Higher values of c 

increase the yield stress on the stress-strain curve. The inputted values for the a and b 

parameters affect the shape of the curve at strains higher than the match point.  
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 Table 11. Parameters for complex hyperbolic model 

γ a b c d a* b* c* d* 

15 -3.5E-
07 

-8.1E-
05 

1.06E-
02 

2.05E-
02 

-4.0E-
07 

-9.0E-
05 

1.20E-
02 

2.00E-
02 

22 -5.8E-
07 

6.00E-
06 

4.50E-
03 

1.00E-
02 

-7E-
07 

4.00E-
06 

5.70E-
03 

1.00E-
02 

39 -3.2E-
07 

1.00E-
05 

1.80E-
03 

5.00E-
03 

-3.5E-
07 

1.00E-
05 

2.10E-
03 

5.00E-
03 

 

The tangent modulus at any point along the stress-strain curve can be calculated for 

the various hyperbolic models. For the standard hyperbolic model, Equation 8 is the 

mathematical form. In Equation 8, Eit is the initial tangent modulus, Et is the tangent 

modulus at any compressive stress level, σ1 is the major principal, σ3 is the minor 

principal stress. 
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Equation 8 is the stress-strain equation differentiated. The squared term represents the 

amount that Eit is reduced at any point. At zero stress, E = Eit. At very large stress, E=0, 

which means that the stress-strain curve is horizontal and that there is continued strain 

with an increase in stress (i.e., perfect plastic behavior). Note that in the last part of 

Equation 8, the use of the stress ratio removes strain from the formulation. If strain is 
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desired in the formulation, an approximation can be made with curve-fitting techniques 

wherein Equation 9 should be used. In this equation, C is a constant found from curve 

fitting. For EPS15, C is equal to 1.75 for modulus in units of kPa.   

 

εC
EE itt +

=
1

1
                                                                (9) 

 

For the matched double hyperbolic model, the tangent modulus is shown in Equation 

10 using differentiation of Equation 2.  
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To determine the tangent modulus for the complex hyperbolic model, differentiate the 

stress-strain relationship for the complex hyperbolic model as in Equation 11. 
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Note that ε remains in both the complex and matched double hyperbolic formulations 

of the tangent modulus.  In contrast, in the standard hyperbolic model, there is a failure 

stress which removes the need for strains in the formulation.  In the complex hyperbolic 
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model, there is no failure stress, just stresses that lead to changes in the modulus. A 

comparison of Tangent Modulus between data and Equations 9 and 11 is presented in 

Figure 28. Figure 28 shows tangent modulus as a function of strain level. Note that the 

tangent modulus from the complex hyperbolic model and the data completely over-lap. 

The tangent modulus from Equation 9 has a slight difference from the data at strains from 

1% to 2.5%.  

 

Conclusions 

EPS Geofoam specimens of two sizes and three nominal densities were tested 

vertically in monotonic and axial compression to large compressive strain. The test 

results showed that the compressive resistance of EPS is a function of its density. The test 

results also showed that the material undergoes significant strain hardening after yield, 

especially after about 30% axial strain. There are several data plots contained in 

Appendix B. These plots are applicable to the hyperbolic model developed and discussed 

in the previous section, as well as the Geofoam compression test data.  In the plots, Type 

I refers to EPS15, Type II refers to EPS22 and Type III refers to EPS39. 
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CHAPTER 4 
 

 GEOFOAM – PIPE INTERACTION TEST 
 

The laboratory tests thus far described have solely focused on EPS Geofoam behavior 

in axial compression.  In this section, a bench-scale test involving the interaction between 

a block of EPS Geofoam and a steel pipe is described.   

 

 Objectives 

The objectives of this Geofoam-pipe interaction test were:  (1) to gain insight into the 

behavior of Geofoam in more complex loading conditions other than uniform axial 

compression, (2) to measure the Geofoam-pipe interaction in terms of total axial load, 

gross sample deformation and localized strain measurements as the test progressed and 

(3) to use these measurements to develop a realistic numerical model of the EPS 

Geofoam for this loading case. The test data obtained were used to develop a numerical 

model, or method, that reasonably reproduces the experimental behavior. Ultimately, 

these activities aided in developing an evaluation method for EPS Geofoam cover 

systems for buried pipelines that undergo permanent ground displacement. 
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Description of Test Setup 

The pipe used for the test was a 101.6 mm OD steel pipe (6.4 mm wall thickness) and 

a 457 x 457 x 457 mm cube of EPS15 (measured density of 14.4 kg/m3).  The interaction 

of the pipe and the block was created by pushing the EPS block downward onto the top 

of the fixed pipe using a 457.2 mm square plate that was a 25 mm thick steel plate 

positioned atop the EPS block (Figure 29). The steel pipe was centered at the base of the 

block and held in position by the cross-brace of the hydraulic jack reaction frame.  The 

Geofoam block was forced downward via a hydraulic jack while the steel plate atop the 

block distributed the axial load and produced a uniform, downward displacement of the 

top of the block.  In essence, this test setup produces the same force reaction and block 

deformation as if the pipe was being displaced into the EPS block that is rigidly 

restrained on its opposing side.   

Linear variable differential transformers (LVDTs) and an S-type load cell were used 

to measure the total vertical displacement and force developed in the system. The LVDTs 

and load cell were connected to a Campbell ScientificTM CR 1000 data acquisition 

system, which was set at a sampling rate of 0.5 Hz.  In addition, the LVDTs and load cell 

were calibrated prior to performing the test to ensure the acquisition of reliable data. In 

addition to the electronic sampling, a photographic technique was used to measure the 

localized vertical deformation pattern that developed as the test progressed. A 35 mm 

digital still camera and a digital video camera were positioned to record changes in the 25 

mm square grid pattern that had been drawn on the face of the EPS block. These cameras 

were set up so that the center of their focal plane was positioned parallel with the center  
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Figure 29. Beginning condition for EPS Geofoam pipe interaction test 
 

elevation of the Geofoam block. This was done to minimize any photographic distortion 

of the photographed grid. 

The test setup consisted of positioning a 1.2 m length of pipe in the reaction frame.  

The Geofoam block was then centered on the top of the pipe and was capped by the steel 

plate to distribute the vertical load imparted by the piston of the hydraulic jack. One 

LVDT was placed atop the plate near its center, and a second LVDT was placed near the 

edge of the plate to measure any differential displacement (i.e., rotation) of the plate as 

the test progressed. The load cell was positioned at center-top of the steel plate and steel 

cylinder spacers were used to fill the gap between the load cell and the steel plate (Figure 

29).  
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In addition, the top of the load cell was connected to the hydraulic piston via a 

threaded steel rod coupler. Thus, the hydraulic jack could push downward on the load cell 

which in turn applied the vertical load to the steel plate placed atop the Geofoam block.     

The hydraulic jack used was a pump-action that is manually operated with a lever. 

Prior to the test, it was affirmed that the jack could be manually advanced at an 

approximately constant displacement rate of about 6.4 mm per minute in a consistent 

manner, as measured by the LVDTs and the data acquisition system.   

 

Pipe Load Test 

A uniform square grid was marked on two faces of the Geofoam block to allow the 

cameras to photograph the deformation of the block as the test progressed. The grid was 

marked at 25 mm intervals in both the horizontal and vertical directions (Figure 29).  Red 

push-pins were added at every other grid intersection (i.e., 50 mm spacing) to highlight 

the mesh on the face of the block for the photography.  

The data acquisition system and video camera were started before testing began to 

establish baseline readings. The still camera was manually operated to record a frame 

every 10 seconds throughout the test. The hydraulic piston was advanced at a rate of 

approximately 6.6 mm per minute.  

As the load was applied, the EPS block began to deform at the pipe-Geofoam contact 

point. In Figure 29 and subsequent photograph Figure 30, the undeformed grid pattern 

has been superimposed on the deformed grid pattern to give an idea of the relative 

movement of each grid point. The steel plate was advanced until approximately 118 mm 

of vertical displacement had occurred before the test was stopped. The Geofoam block  
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Figure 30. Deformation state of EPS15 Geofoam block after 89 mm of displacement 
 

 

was not restrained on it sides, and the base of the block  placed atop the pipe was free to 

rotate about the axis of the pipe during the test.  After the test was completed, compliance 

testing of the load frame and load cell was done to correct the experimental data for 

compliance of the load frame, steel plate, loading apparatus and load cell. The corrections 

due to distortions of the load frame and load cell were minimal, but the displacement data 

were still corrected.   

 

Test Results and Observations 

As the test progressed, tensile cracks began to form after approximately 33.83 mm of 

advancement. The tensile cracks continued to develop throughout the test following their 
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initial formation (Figure 30). Note that this figure include an overlay of the original, 

undeformed shape of the Geofoam shown with blue dots and lines. The deformed state 

shows the same nodal points in red with black lines.)  The cracks initiated at the interface 

of the pipe and Geofoam approximately 51 mm on either side of the center line of the 

Geofoam block. These cracks formed along the entire contact length of the Geofoam and 

pipe in the direction perpendicular to the photos. The test was terminated after about 118 

mm of vertical displacement. 

Figure 31 shows the force-displacement data collected during the pipe interaction test. 

The displacement at end of test, as shown in Figure 31, was 11.8 cm. The shape fo the 

curve is initially linear and begins to develop a hyperbolic shape with softening until a 

displacement of approximately 9.5 cm, when the test data experienced hardening. 

Figure 32 shows that most of the compressional strain in the EPS occurred in a  zone 

near the top and edges of the pipe. However, vertical strain can be detected throughout 

the block. In addition, very little lateral bulging of the block occurred along its sides; but 

as the test progressed, there was a slightly curling inward of the EPS block toward the 

pipe as seen in the lower right and left hand corners of the block (Figure 30b). Prominent 

tensile cracks also developed at a 45 degree angle from the horizontal where the EPS was 

in contact with the pipe (Figure 30b).  

 

Vertical Load and Displacement 

     The data from this test were used to produce a load versus displacement plot (Figure 

31). Figure 31 shows that the Geofoam compressed somewhat linearly to a vertical load 

of about 5.34 kN and displacement of about 23 mm (i.e., 5% axial strain).   
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Following this, the behavior shows a slight strain softening. At about 92 mm of 

vertical displacement, the slope of the load-displacement increases, suggesting that strain 

hardening is occurring within the block. The test photos (Figures 30) show that high, 

localized strain develops in the zones near the pipe-Geofoam contact surface where the 

compression of the Geofoam is at its greatest. Severe damage of the EPS occurred in this 

zone which produces the changes in slope of the load-displacement curve, as seen in 

Figure 31.  It appears that this zone initially softens, due to plastic behavior, and then 

later strain-hardens, producing the increase in load.  In contrast, other regions of the 

block, which are further removed from the penetration zone, behaved more elastically. 

Thus, there are regions of the EPS that are behaving elastically, some are behaving 

plastically and some zones have strain hardened.  This complex material behavior causes 

a very nonlinear behavior in the total force-displacement relation (Figure 31).   

As the test progressed, tensile failure developed; hence, the localized, nonuniform 

strain and its influence on the overall load-displacement behavior is quite complex. Such 

behavior is not observed in simple uniaxial compression tests (Figures 16 and 25). A 

comparison of Figure 31 with these figures shows that uniaxial compression tests cannot 

be used to fully explain the complex deformation that results from a localized loading 

caused by a pipe penetration. 

 

Final Vertical Strain Distribution 

After the loading plate had finished, but prior to unloading, the vertical deformation 

and strain of the Geofoam block were measured. The amount of vertical displacement of 

the 50-mm grid was measured with a ruler and compared to photographs at a later time 
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(Figures 30). The vertical strain for each initial 50-mm grid on the centerline of the block 

was calculated as the distance at the end of loading divided by 50- mm. Figure 32 shows 

the localized vertical strains at 50-mm intervals along the vertical centerline of the 

Geofoam block. The total vertical strain for the entire block along the centerline axis was 

33%. The highest strain, of about 70%, was measured near the pipe. Much of the vertical 

strain is concentrated in the lower 8 inches of the block.  Near the top of the block, where 

the steel plate contacted the EPS, the vertical strains are about 5 to 15%. The block was 

then unloaded and the strains were recalculated at the end of unloading (Figure 32). The 

strains that remain represent the plastic strain of the block. The permanent vertical strain 

has a maximum value of about 62% near the pipe and diminishes to about 5 to 15% near 

the steel plate (Figure 32) 

.   

 Numerical Modeling of Pipe Interaction Test 

Understanding and predicting the force-displacement behavior of a pipe push against 

a Geofoam block is an important design consideration for applications where the 

Geofoam is placed against a pipe and is subsequently compressed by movement of the 

adjacent ground. Exploratory numerical modeling of the pipe penetration experimental 

data was done using the computer program FLAC.  FLAC is an acronym for Fast 

Lagrangian Analysis of Continua and was developed by Itasca (2005) as a general finite-

difference program used in geotechnical and mining engineering. Figure 33 shows the 

results of several modeling attempts as well as the experimental data.  

 The preliminary modeling was done using the Mohr-Coulomb constitutive model 

implemented in FLAC. The model properties used to obtain he FLAC results for the  
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preliminary modeling are given in Table 12 and shown in Figure 33. The Mohr-Coulomb 

model, as implemented in FLAC, uses linear-elastic behavior for states of stress below 

the Mohr-Coulomb failure envelope. Upon reaching failure, a perfectly plastic material is 

approximated by the FLAC code for the elements that have exceeded their respective 

strength envelope. Figure 33 shows that the use of simple linear elasto-plastic Mohr-

Coulomb material properties from EPS Geofoam testing did a relatively poor job of 

matching the test data. In response, several other elastic behavior implementation 

schemes with the Mohr-Coulomb material model were attempted.  

 

 

 

Table 12. Mohr-Coulomb material properties for EPS Geofoam 

 � K G �� c T 
 kg/m3 MPa MPa deg kPa kPa 

FLAC model 15 1.00 1.50 0 50 200 

Nominal EPS15 15 1.25 1.36 0 50 200 

Softened 
Modulus  15 0.50 0.75 0 50 200 

 

 

 

88



 

 

Because the Mohr-Coulomb material properties did not match the experimental 

results well, a parametric study was done to find better ways of modeling the pipe 

interaction problem in FLAC. A calibrated, “ softened,”  FLAC model was completed 

first, where the elastic modulus in FLAC were parametrically adjusted, “ softened,”  until a 

match to the experimental data was found. The elastic and Mohr-Coulomb properties for 

a typical EPS15 block are also shown below those used in the calibrated FLAC model in 

Table 12.  A comparison of the various moduli shows that a reduction by about a factor 

of 2 was required for the FLAC model to match the experimental data.  This severe of a 

reduction in the FLAC properties suggests that the block reached the plastic state rather 

quickly in the vicinity of the pipe.  Thus, the FLAC softened model moduli are more 

representative of near-yield moduli. 

In an effort to model the pipe interaction with data from compression testing, rather 

than using parametric curve matching, two methods of varying the elastic moduli of EPS 

Geofoam were attempted. The first method was to divide the stress-strain curve for 

EPS15 into three linear segments with constant elastic modulus (i.e., trilinear model). 

Figure 34 shows the three linear segments on an accompanying experimental plot. FLAC 

was programmed to keep the elastic moduli constant until a triggering stress was reached. 

After the triggering stress, the moduli were softened to the second linear segment. A 

second triggering stress was placed at the boundary between the second and third 

segments of the stress-strain curve. At the moment the stress in a FLAC zone reached the 

triggering stress, the moduli in that zone were then changed accordingly. Table 13 shows 

the moduli and triggering stresses.  
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Table 13. Trilinear modulus approach parameters 

 

Figure 35 shows the FLAC model mesh before compression. This can be compared to 

the photographs of the test shown previously. Figure 36 shows that the stress-based 

trilinear modulus did a much better job at predicting the force-displacement relationship 

of the pipe interaction problem than the constant elastic property model, but it did not 

match the shape of the curve as well as the constant elastic moduli model or the 

parametrically reduced modulus model.  

     A second attempt at modeling the curve was then attempted. This second attempt used 

a constantly softening nonlinear modulus based on strain in the EPS Geofoam block. The 

nonlinear modulus approach sets the elastic moduli initially elastic, and the same as for 

the constant Mohr-Coulomb model. The modulus was then made to change as a function 

of strain. The functional form of the reduction equation is shown in Equation 12, where K 

is the bulk modulus, 230 is a constant from curve-fitting, and ε is the vertical or axial 

strain. Note that Equation 12 is the same in form as Equation 9. The shear modulus was 

calculated using a constant Poisson’ s ratio of 0 from the results of Equation 12. Note that 

Equation 12 is based on Equations 6 through 11. 

Zone Elastic 
Modulus Lower Stress Upper Stress 

-------------- kPa kPa kPa 

1 3500 0 43 

2 1000 43 59 

3 250 59 150 
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( ) 230*1
1

ε+
= iKK                                                   (12) 

 

The nonlinear modulus was implemented in the FLAC code as a Mohr-Coulomb 

material with the same failure criteria as the other models. Figure 36 shows that the 

nonlinear modulus did a better job than the trilinear softened modulus at matching the 

experimental data, although it did not perform as well as the parametrically reduced 

modulus. 

Due to the amount of empirical fitting involved in the previous modeling attempts, a 

final model was attempted using the complex hyperbolic model for EPS 15 (see previous 

chapter for discussion of the development of this model). Figure 36 presents the modeling 

results for this attempt. 

The FLAC model graphical output representing the pipe test is shown in Figure 37. 

This model has nodal points at 25 mm square spacing, which corresponded to the grid 

drawn on the EPS block (Figure 29). The upper boundary nodes of the model, 

representing the steel plate, were fixed together in both directions, so that this boundary 

would displace uniformly downward in the y-direction. The lower boundary of the 

model, where the circle is present to present the pipe, was fixed in both directions to 

represent a rigidly mounted pipe. The remaining nodes in the Geofoam zone of the model 

were free to move in both the x and y-directions.  

The Geofoam to pipe contact surface was treated as a rigid-frictionless interface in 

the FLAC model. The properties of the pipe were set to be essentially rigid to prevent 

internal pipe deformation and the nodes of the pipe were fixed within the model to not 

allow internal movement. 
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The model was initiated by allowing equilibrium to be established under the self-

weight of the system.  Following this, displacement of the upper plate was initiated by 

moving the upper boundary, representing the plate, at a constant velocity.  The model 

geometry became unstable at 81 mm of displacement; thus, a velocity of 1.00e-6 was 

applied to all the nodes that form the top boundary of the model in order to allow 

unbalanced forces to equalize in the model.   

 

 Modeling Results 

The total vertical load carried by the EPS block was calculated by summing the 

vertical nodal forces for all nodes in the Geofoam block at each time step (Figure 35).  

The displacement for this figure is the displacement of the top center node of the mode, 

which represents the center of the downward moving plate. The FLAC model can 

reasonably replicate this behavior, until the model becomes unstable (i.e., tensile failure 

of the Geofoam near the pipe causes the nodal geometry to become too deformed to 

continue the calculation). Figure 36 shows all the modeling attempts using the various 

constitutive models.  

From an examination of Figure 36, the relations producing the best fit to the 

experimental data were the complex hyperbolic model and the softened Mohr-Coloumb 

model. The curve-fit and trilinear modulus approaches worked better than the constant 

Mohr-Coloumb model, but had deficiencies at larger displacements. The comparison 

shows that the best method of modeling EPS Geofoam interacting with a pipe in direct 

compression is to use the complex hyperbolic model that incorporates the nonlinear 

elastic behavior of the Geofoam as well as its strain hardening behavior at larger strains.  
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Figure 37 shows the modeling results after 81 mm of vertical displacement.  The 

deformed shape reasonably represents the experimental photo (Figures 30); however, 

near the end of the computer run, as the pipe was making full penetration into the 

Geofoam, the outer face of the block expanded slightly outward in the bottom one-half of 

the model.  In contrast, the observed Geofoam behavior did not expand outward (Figure 

30), suggesting that the bulk modulus model parameters and/or the constitutive relations 

are somewhat deficient. Nonetheless, the force-displacement and strain distribution 

obtained from this test are reasonably represented by the FLAC model using the complex 

hyperbolic constitutive relation. 

 

  Conclusions 

The results of the Geofoam-pipe interaction test showed that the interaction of EPS 

with a penetrating steel pipe is a nonlinear problem that involves strain softening and 

ultimately strain hardening.  The compressional strain in the Geofoam block concentrates 

near the Geofoam-pipe interface and spreads through the Geofoam mass in a complex, 

nonlinear manner. Ultimately, tensile failure occurred in a zone of highly localized 

compression that occurs near the top of the pipe.  This type of behavior was not seen in 

simple axial compression tests of Geofoam, where high, nonuniform stress concentrations 

were not developed. 

 The Mohr-Coulomb material model, as implemented in FLAC, can be calibrated 

to match this behavior. However, the elastic material properties (i.e., bulk and shear 

moduli) must be significantly softened to approximately 50% of their initial values, or be 

softened with a continuous function based on stress or strain. Also, the Mohr-Coulomb 
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model cannot be used to represent strain-hardening at higher compressive strains.  A 

model that includes an initial elastic range, a plastic range and a strain-hardening range is 

required, such as the complex hyperbolic model developed in Chapter 3.   
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CHAPTER 5 
 

 LATERAL SOIL-GEOFOAM-PIPE TESTS 
 

A series of experiments using a 171.5 mm OD steel pipe were conducted to obtain the 

force-displacement behavior for pipe horizontal movement interacting with EPS block. 

For this series of tests, the steel pipe was pushed laterally in a box that included various 

backfill and cover configurations. These tests were done to explore the benefits of using 

EPS as a compressible inclusion against a pipe undergoing horizontal displacement. The 

primary goal of the research described in this chapter was to measure the reduction in 

stress on the pipe for the various cases and to later use this information for numerical 

modeling of the interaction.  Four full-scale experiments were conducted at the 

University of Utah’ s Department of Civil and Environmental Engineering in the Summer 

and Fall of 2008.  

 

 Experimental Setup 

A self-contained test system (i.e., trench box) was locally manufactured for the 

experimental program.  This test system included a loading device, reaction system (i.e., 

reinforced external walls of the box), a load device (i.e., actuator), a test chamber for the 

soil-Geofoam interaction testing and the required instrumentation for measurements. 
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Test Box Setup 

A steel box was constructed for the University of Utah by Knox fabrication of Salt 

Lake City, Utah.  The box’ s overall dimensions were 5.34 m long, 1.83 m wide and 6 

1.83 m high (Figure 38). The box was constructed of 6.35 mm thick steel plates. The 

horizontal load capacity of the box was approximately 111 kN. Both ends of the trench 

box were reinforced and braced with structural steel to withstand the forces involved in 

the experiments and to minimize the reaction deflections of the ram against the wall.  A 

reinforced door was constructed on one end, which allowed side entry into the box.  The 

top of the box was also left open; this allowed for sand to be placed in the box from 

above. 

Internally, the trench box was divided into two chambers by a 10 mm thick steel 

partition wall (Figure 39).  The smaller chamber houses the actuator and is 2.13 m long. 

In the smaller chamber, the actuator reacts internally against the end wall of the steel box. 

Three struts extended from the actuator, through the partition wall, into the second or test 

chamber. Thus, the actuator imposes the horizontal force on the pipe via these steel struts 

that extend into the second chamber.  Both chambers were 1.83 m wide. The second 

chamber was 3.14 m long and houses the pipe, Geofoam and sand backfill used in the test 

program. In this chamber, a 171.5 mm O.D. steel pipe was welded onto the struts.  This 

allowed sand and EPS Geofoam to be placed around the pipe, and the pipe to be pushed 

laterally into the backfill system. The center of the pipe rests 0.457 m above the bottom 

of the box, which produces a height to pipe diameter ratio (H/D) of 10. 
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Figure 39. Sketch of steel trench box section and plan view 
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 Materials 

In the trench box test program, only two materials were used as backfill material:  

sand and EPS block. Both were chosen for their relatively uniform properties which aided 

repeatability between tests and in the numerical modeling of the test results.  Also, sand 

is typically used as a backfill soil in pipeline trenches. 

 

EPS Geofoam 

EPS15 was used exclusively for these experiments as it is more compressible than 

higher density Geofoam. High compressibility is desired for compressible inclusion 

applications to reduce lateral forces on a pipe when it is pushed into a sidewall of the 

trench lined with EPS. The properties of EPS15 were obtained from the laboratory testing 

described previously, The EPS15 blocks were obtained from ACH Foam Technologies of 

Salt Lake City, Utah. The blocks used for tests 1 and 3 measured 608 x 608 x 1828 mm. 

The foam blocks used for test 4 were 608 x 914 x 1828 mm. The long dimension of the 

blocks was purposely slightly undersized to allow for sliding between the block ends and 

the side walls of the trench box. This produced a relatively low frictional boundary 

condition. Silicone lubricant was sprayed on the trench box side walls and floor, and two 

layers of plastic sheeting were placed against the side and end walls to reduce frictional 

effects. This is the method recommended by Tongon et al. (1999), who studied the best 

way to reduce boundary effects for chamber tests with pipes. 
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Sand Backfill 

Loose, well-graded sand was used for the tests (Figure 40).  The sand was a standard 

ASTM C33 fine aggregate.  This sand was angular and rough. The gradation was defined 

by 100% passing the 3/8 inch sieve and 2.5% fines (i.e.,% passing the #200 sieve).  

Figure 40 also shows D10, D50, and D60 for the backfill sand. The fines were nonplastic. 

The sand was dumped through the top of the box by a skid steer, hand-placed and 

compacted with a vibrating plate compactor to an average dry density of 16 kN/m3.  The 

average in place moisture content was 2.5%. The average total unit weight of the sand 

was 16.42 kN/m3.  

 

 Procedures 

The experimental procedures for this testing program are as follows:  (1) before any 

sand is placed in the sand chamber of the test box, the hydraulic ram was moved back to 

its initial position, (2) the sensors were recalibrated and (3) the pipe and push rods were 

all leveled and in-plane.  The pretest position of the pipe in the trench box is shown in 

Figure 41. 

The sand was placed in 150 to 200 mm lifts.  Thus placed, the sand was in a loose 

condition. The lifts were made uniform by shovel spreading and subsequently compacted 

using a vibrating plate compactor. Following compaction, the in-place density of the sand 

was measured with a TroxlerTM nuclear density gauge. The water content of each lift was 

also checked with the density gauge.  This particular gage provides estimates of the total 

unit weight, dry unit weight, and moisture content for each test. The rod was extended  

104



 

 

010203040506070809010
0

0.
01

0.
1

1
10

10
0

S
ie

ve
 O

pe
ni

ng
 (m

m
)

% Passing

D
10

=0
.2

2m
m

D
50

=0
.6

m
m

D
60

=0
.7

5m
m

 

Fi
gu

re
 4

0.
 G

ra
da

tio
n 

of
 C

33
 s

an
d 

us
ed

 in
 tr

en
ch

 b
ox

 

105



 

 

 

Figure 41. Initial position of pipe in trench box before sand placement 
 
 
200 mm into the soil for each lift; except for the initial lift, where the rod was extended 

100 mm. Each lift was checked with 5 tests at random locations. To avoid interference 

with the steel walls of the box, no tests were conducted within 150 mm of the walls.  

Figure 41 shows the test box sand chamber before any sand or Geofoam is placed. Note 

the pipe supported by three stiff rods coming through the partition wall.  

     When the sand had been brought up to the appropriate level, the sand was carefully 

leveled (raked) and the EPS bocks were placed in direct contact with the pipe. Placement 
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of sand and foam was done until sand was within 152 mm of the top of the box (Figure 

42).  The top sand surface was marked with paint in a uniform grid.  

An elevation survey was done on these painted surface points so that they could be 

compared with the posttest elevations to determine the amount of heave and/or 

subsidence. The survey instrument was a Sokkia self-reading level that has an accuracy 

of ± 0.1 mm, with repeated measurements. The points were surveyed in a referenced 

pattern for comparison between pre and posttest. Survey was taken in reference to a 

benchmark.   

Following box preparation, the equipment in Appendix E was readied. The equipment 

includes the hydraulic ramp and data acquisition. Appendix E details the attributes and 

specifications for all test equipment. The test data were constantly sampled by the data 

acquisition system using a laptop that was running on an noninterruptible power supply. 

After the test was completed, the grid points atop the sand were resurveyed.  Figure 43 

shows top surface and grid points after completion of a test, as well as the developed 

cracking pattern. 

Following the survey, the ram was retracted to its pretest position. The sand was 

excavated out of the box and the Geofoam blocks were removed for examination. The 

data from the various instruments were then imported into MS ExcelTM for data 

processing.  The VW pressure cell data were also imported into ExcelTM and included 

with the automatically retrieved data. 

 

107



 

 

 
 

Fi
gu

re
 4

2.
 C

om
pl

et
el

y 
fi

lle
d 

tr
en

ch
 b

ox
 w

ith
 s

ur
ve

y 
gr

id
 re

ad
y 

fo
r t

es
tin

g 

108



 

 

 

 

Fi
gu

re
 4

3.
 P

os
tte

st
 p

ho
to

gr
ap

h 
of

 to
p 

of
 b

ox
 a

nd
 d

ev
el

op
ed

 c
ra

ck
in

g 
pa

tte
rn

 fi
ss

ur
ed

 s
an

d 
af

te
r t

es
tin

g 

109



 

 

Testing Program 

The testing program consisted of 4 tests with differing configurations. The objective 

of the program was finding the most efficient system for a soil-Geofoam backfill system. 

The first test was configured with a single 610 x 610 x 1828 mm EPS15 block placed 

along the side of the pipe. The block was positioned so that the center elevation of the 

171.5 mm OD steel pipe was at the center elevation of the EPS block. This first test 

investigated the efficiency of a conceptual system that had been modeled previously in 

FLAC3DTM by Bechtel Corporation. The second test was the baseline experiment for the 

testing program. Because it consisted solely of sand backfill, the effectiveness of other 

configurations could be compared with the base case. Also, the results from the second 

test were compared with the results obtained by Trautmann and O’ Rourke (1984) for 

pipes pushed laterally into sand. The third test was a double Geofoam block 

configuration. For this test, two 610 x 610 x 1828 mm EPS15 blocks were placed side-

by-side adjacent to the pipe; thus, the pipe was pushed laterally into 1.22 m of EPS15. 

The rationale for this configuration was to see if the thickness of the compressible 

inclusion had a significant impact on the load-displacement behavior. (It was thought that 

a thicker compressible inclusion would allow for a softer loading behavior and delay the 

strain hardening behavior that was seen and described in the test program conducted in 

the previous chapter.) The fourth test was based on a different concept for reducing the 

pipe stresses. Instead of using a compressible inclusion in the side wall of the trench; this 

test sought to achieve lower horizontal soil resistance by minimizing the weight of the 

cover system (Figure 44).  Thus, it was devised to test a light-weight cover system 

instead of a compressible inclusion. The goal of this configuration was to use EPS as a  
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Figure 44. EPS block layout for test 4 
 

 

super light-weight cover system and effectively reduce both the vertical and horizontal 

earth pressures that act on the pipe as it is pushed horizontally. Because of this, the 

stiffness and shear strength of the back sand placed adjacent to the pipe would be reduced 

significantly, thus allowing the pipe to displace more easily through the backfill and 

reduce the total load transferred to the pipe. The idea being to simulate very shallow 

embedment for a geometry that has a deep embedment. Shallow embedment has long 

been known to be an effective mitigation technique for fault crossings. 
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 Lateral Movement Experimental Results 

The data from all four tests have been normalized for comparison purposes. The total 

force measured by the load cell attached to the actuator was normalized and made 

dimensionless by dividing the total load by the product of the pipe’ s length, diameter, 

depth of embedment and the total unit weight of the sand backfill. The total displacement 

of the pipe can be made dimensionless by dividing this displacement by the diameter of 

the pipe. These normalizations were introduced by Trautmann and O’ Rourke (1984) and 

are done in this report.  Other load displacement plots presented in this chapter have not 

been normalized. 

 

Test 1 – Single 610 mm Block Placed Adjacent to Pipe 

Figure 45 shows the force-displacement curve for test 1. In addition, this figure shows 

the earth pressures that developed in the soil mass at 4 locations at the same total 

displacement of the pipe. The earth pressure cells were arranged so that the horizontal 

pressure that developed immediately behind the Geofoam was measured.  Two cells were 

positioned 1 foot behind the block at two locations.  In addition, the horizontal pressure 

that developed at a distance halfway between the EPS15 block and the box back wall was 

measured, and the horizontal pressure near the back wall was also measured.  However, 

unfortunately, a short occurred in the cable for the sensor placed near the back wall which 

produced erroneous readings and these data were rejected.   

The peak horizontal load from test 1 was 123.7 kN and occurred at a displacement of 

280 mm. (This peak load and its displacement convert to a normalized force of 16, and a 

dimensionless displacement of 1.65.)  The peak stress between the EPS15 block and the  
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Figure 45. Force versus displacement (mm) and horizontal pressure (stress) plots results 
for test 1 – single EPS block against pipe with sand backfill 
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sand was 45.5 kPa at a pipe displacement of 266.7 mm. The peak stress 305 mm behind 

the block decreased to 20.6 kPa at a pipe displacement of 330 mm, and the peak stress 

midway between the block and the back of the test box was 21.8 kPa at 343 mm of pipe 

displacement. 

The shape of the force-displacement curve for test 1 has a typical hyperbolic shape 

similar to the shape of the force-displacement curves for loose sands and/or normally 

consolidated clays. 

 The shape of the curve does not, however, resemble those published by Trautmann 

and O’ Rourke (1984). The peak normalized force and dimensionless displacements also 

do not compare favorably to those developed by Trautmann and O’ Rourke (1984). The 

curve presented here is higher than the loose sand curves developed by these researchers. 

In the first test, the total pipe force reached a higher peak than was expected. The peak 

force was much larger than Trautmann and O’ Rourke (1984) curves for loose to medium 

dense sand. This lead to the need for a baseline test with only sand for comparison.  

 

 Test 2 – Sand Backfill Only 

Test 2 was performed with sand backfill and bedding. This was the baseline case for 

comparison with literature and the other tests in the program. Figure 46 shows the data 

and results for this configuration including lateral pressures that developed within the 

sand backfill. The earth pressure cells were arranged in test 2 such that the pressure was 

measured at 305 mm, 610 mm, and halfway to the backwall behind the pipe. The pressure 

on the chamber backwall was also measured. 
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Figure 46. Force versus displacement (mm) and horizontal pressure plots for test 2 - pipe 
with sand backfill 

 

 

 

 

 

Displacement (mm) 

F
o
r
c
e
 
k
N

P
r
e
s
s
u
r
e
  
 
k
P
a 

115



 

 

The shapes of the force displacement and pressure displacement curves are similar to 

those seen for medium dense sands and heavily over-consolidated clay having a decrease 

in force or stress after a peak that occurs at a relatively small displacement. In test 2, the 

peak load measured by the force load cell for the pipe was 90.7 kN at a horizontal pipe 

displacement of 57.2 mm. The peak earth pressure, measured 305 mm behind the pipe, 

was 115 kPa at 54 mm of horizontal displacement. The highest horizontal earth pressure 

measured 610 mm behind the pipe was 56 kPa at a pipe displacement of 63.5 mm.  

Halfway between the pipe and the back wall, the peak horizontal pressure was 15.1 

kPa at a horizontal pipe displacement of 56 mm. There was essentially no change in 

horizontal pressure measured along the back wall compared to the start of the test, 

indicating that the failure plane for the sand came upward well before encountering the 

trench box back wall. 

The peak results for test 2 produced a normalized force of 11.8 at a dimensionless 

displacement of 0.33. The results compared fall somewhere between the Trautmann and 

O’ Rourke (1984) results for medium dense sand with a cover ratio of 5.5 and loose sand 

with a depth of cover ratio of 11.  Note that the 1984 research used a smaller pipe and test 

chamber, which may contribute to difference between the experimental results. 

 

 Test 3 – Two 610 mm Blocks Placed Adjacent to Pipe  

In test 3, two 610 x 610 mm EPS15 blocks were placed adjacent to the pipe which 

provided a 1.22 m EPS15 compressible inclusion for the pipe.  It was thought that this 

larger compressible inclusion would allow for more horizontal displacement before 

reaching the peak force. Figure 47 shows the force-displacement and pressure-  
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Figure 47. Force versus displacement and horizontal pressure plots for test 3 – two 
EPS block against pipe with sand backfill 
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displacement curves for this configuration. The earth pressure cells were arranged in test 

3 so that the horizontal pressure between the Geofoam blocks was measured. This was 

done to see if this configuration effectively decreased the horizontal stresses produced by 

the pipe at the same location measured by test 1.   

The horizontal pressure just behind the second block was measured at a distance 

which was halfway between the back of the second block and the trench box back wall. 

The horizontal pressure along the back wall of the box was also measured.  

The shape of the force-displacement and the pressure-displacement curves in Figure 

47 are dissimilar to those published for sands or clays by Trautmann and O’ Rourke 

(1984). The shape in Figure 47 shows an initial stiffer linear behavior followed by a less 

stiff, but continually increasing load that forms a bilinear strain hardening curve. Note the 

horizontal earth pressure versus displacement curves have an initial relatively flat 

behavior and that the load cell shows an initial negative value. This behavior resulted 

from the hydraulic ram, which for some unknown reason, retracted slightly from its 

initial position when pressurized. The actuator pulled back from the starting position, 

placing the force load cell in tension and leading to this anomaly at the beginning of the 

earth pressure curves. Note also the pressure cell placed between the Geofoam blocks 

initially recorded a pressure of nearly zero before initiating the test and the retraction of 

the actuator.  

In test 3, the peak force measured by the load cell was 134.8 kN at a total pipe 

displacement of 325 mm. (This test was terminated at this horizontal force due to 

concerns about damaging the end walls of the trench box.) The highest horizontal earth 

pressure measured between the Geofoam blocks was 98.6 kPa at a displacement of 335.3 
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mm. The highest horizontal earth pressure measured 305 mm behind the blocks in the 

sand backfill was 47.4 kPa at a displacement of 335.3 mm.  Midway between the back of 

the blocks and the back wall, the highest horizontal pressure was 34.5 kPa at a pipe 

displacement of 335.3 mm. There was virtually no change in horizontal pressure 

measured along the back wall compared with the start of the test, indicating that the 

displaced soil from the test did not engage the soil near the back wall.  

The highest force for test 3 was normalized to 17.5 at a dimensionless displacement 

of 1.9. The total horizontal force in this test is much higher than that of loose and medium 

dense sands (Trautmann and O’ Rourke, 1984) and the dimensionless displacement as a 

function of normalized load is much greater. This finding will be discussed in greater 

detail later in a subsequent section of this chapter.  

 

 Test 4 – Light-weight Cover with No Compressible Inclusion 

In test 4, a thin lift of sand back was placed over and around the pipe (Figure 41).  

The top of this lift of sand was 152 mm above the top of the pipe. The cover above this 

lift consisted of EPS block which was configured with four 610 x 914 x 1828 mm EPS15 

blocks placed adjacent to each other to form a 914 mm thick light-weight cover. EPS 

blocks were subsequently covered with 305 mm of compacted sand. Thus, the total 

amount of sand in the cover system was approximately 457 mm, as measured from the 

top of the pipe. 

Figure 48 shows the force-displacement and pressure-displacement curves for this 

configuration. The earth pressure cells were arranged in test 4 so that the horizontal 

pressure 610 mm behind the pipe was measured. This pressure cell was placed in this  
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Figure 48. Force versus displacement and horizontal pressure plots for test 4 
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location to avoid damage by the large, expected movement of the pipe. The horizontal 

pressure at a distance of 914 mm behind the pipe was measured at two locations.  Lastly, 

the horizontal pressure halfway between the pipe and the trench box back wall was 

measured, as was the horizontal pressure at the back wall of the box. The shapes of the 

force-displacement and pressure-displacement curves are similar to those of loose sand at 

low confining stress from Trautmann and O’ Rourke (1984).  They show a continually 

increasing load that follows an initial linear part of the curve (i.e., bi-linear strain 

hardening curve.) Note that the horizontal earth pressure curves have an initial peak, 

followed by a small drop in pressure and then show a rapid increase in pressure to the 

true peak at the end of the test. This test was terminated at the maximum stroke of the 

actuator, which is about 381 mm.  

In test 4, the peak force measured 53.4 kN at a pipe displacement of 381 mm. The 

peak horizontal earth pressure, measured 610 mm behind the pipe, in the soil underneath 

the Geofoam was 51.2 kPa at 394 mm of displacement.  A false peak of 40.7 kPa at 170 

mm was also seen.  The highest horizontal earth pressure measured 914 mm behind the 

pipe was 22 kPa at a displacement of 388.6 mm. Midway between the pipe and the back 

wall, the peak horizontal pressure was 10.5 kPa at a pipe movement of 391.2 mm. There 

was essentially no change in horizontal pressure along the back wall compared with the 

start of the test, indicating that the sand backfill was not mobilized in this area. 

The peak force results for test 4 were normalized to 6.6 at a dimensionless 

displacement of 2.0. The total load from this test is lower than that of loose and medium 

dense sand from these researchers. In addition, the dimensionless displacement for any 

given normalized load is much greater in test 4. This behavior will be discussed later in 
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the next section of the dissertation. Test 4 is the most efficient system of the 4 tests as 

will be discussed in the subsequent section. 

 

 Comparison of Test Results 

The total force data for all four tests completed during this test program are against 

horizontal pipe displacement for comparison purposes (Figure 49). As expected, test 2 

(sand only) had the stiffest initial response to pipe movement, due to the higher stiffness 

of compacted sand, when compared with EPS. In addition, test 2 had a lower peak force 

when compared with tests 1 and 3 (i.e., EPS compressible inclusion tests).  

Unfortunately, tests 1 and 3 had higher peaks than test 2, which occurred at a 

displacement that is approximately 2 to 3 times larger. For application purposes, this 

means that these systems mobilize more force, albeit at larger displacement, than the sand 

backfill case, which is not a favorable result for pipes that undergo large horizontal 

displacement (e.g., strike-slip displacement).  This conclusion is true for loosely 

compacted sands, but may not be generalized to pipe/EPS systems that engage dense 

sands or cohesive soils. 

The test results for test 4 are much more favorable from an application standpoint. 

This behavior shows an initially stiff behavior followed by a relatively flat force-

displacement response. Thus, such a system produces the lowest peak force and 

maintains the relatively low force for considerable displacement. The data shown in 

Figure 49 can also be plotted in their dimensionless and normalized form (Figure 50). 

Normalized data are important to eliminate scale effects for direct comparison with  
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literature compression data. Normalized data are the typical presentation in the 

geotechnical literature. 

The normalized force is equivalent to the limit-equilibrium horizontal bearing 

capacity factor (Trautmann and O’ Rourke, 1984) for that specific configuration of pipe, 

EPS Geofoam and soil. However, the bearing factor, Nh, does not represent the 

displacement needed to reach that peak normalized force.  This research proposed a new 

term, called the peak number (PN), which is the normalized force divided by the 

dimensionless displacement. Values of PN are unit-less and represent the relative 

efficiency of a horizontally loaded pipe system.  Higher PN values represent systems with 

higher initial stiffness.  In contrast, lower values represent systems that are more efficient 

in accommodating horizontal displacement. Values of PN are intended to provide an 

indication of how much displacement is required for the bearing factor Nh to reach full 

mobilization of backfill soil’ s shear strength. Table 14 shows a summary of the peak 

forces and their corresponding displacements and PN values for the four trench box tests. 

Based on the PN values shown in this table, the configuration corresponding to test 4 

was the most efficient at accommodating horizontal pipe movement. (A relatively low 

total load and high accompanying displacement were achieved and the peak number 

represents this as a value of 3.3.) The two experiments with EPS Geofoam as a 

compressible inclusion (tests 1 and 3) showed higher peak numbers, which represents 

less efficiency; however, they still were more efficient than test 2.  The PN value for test 2 

(soil only) was 35.8, which indicates that the system was relatively stiff and inefficient.  

However, this system did not continue to gain load at large displacements and a residual  
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Table 14. Normalized lateral test results 

 

 

PN value of 5.35 was defined for test 2 at large displacements to show that loose to 

medium dense sands have more efficiency in a residual state compared to tests 1 and 3.  

The maximum force per unit length and accompanying displacement for that load can 

be found from Figure 51.  This figure shows the force divided by displacement values of 

the 4 tests in the small displacement range of the curves. The slope of these curves at any 

displacement is the force/unit length/length or subgrade modulus of the system in pounds 

per square per unit length. Thus, a bilinear or multilinear representation of the subgrade 

modulus can be constructed by a designer to represent the force-displacement 

relationship per unit width of the system for numerical modeling of the system.  

 

 

Test Fmax δmax Nh δmax /D PN 

------------- lb/in mm ------------- ------------- ------------ 

1 386 279.4 16.0 1.65 9.7 

2 283 58.4 11.8 0.33 35.8 

2    residual 260 381.0 10.7 2.00 5.4 

3 421 325.1 17.5 1.90 9.2 

4 167 381.0 6.6 2.00 3.3 
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Discussion of Experimental Results 

It is apparent from the test program that EPS Geofoam did not perform significantly 

better than loose sand backfill when used as a compressible inclusion to reduce horizontal 

stresses imposed on the pipe system undergoing large displacement.   

The EPS Geofoam trench sidewall system gave a less stiff response at low 

displacement compared to the loose sand; but at larger displacement, it developed higher 

loads. It is important to note that these experiments were conducted only with loose sand. 

Dense sands, well graded engineered fill or clays in undrained or unsaturated loading 

may give a stiffer and stronger response to the movement than loose sand. 

It is recommended that numerical models be used to explore the effects of differing 

soil types when used in junction with EPS Geofoam in the sidewalls of the trench. EPS 

Geofoam may still provide a better system for allowing horizontal pipeline movements as 

a compressible inclusion when compared to other soil types. In addition, the system 

showed more complex behavior than initially conceived, and dismissing the idea of the 

compressible inclusion application of EPS Geofoam for laterally moving pipelines based 

solely on these results is premature.  

Increasing the thickness of the compressible inclusion produced only marginally 

better response in loose sand. When considering the two compressible inclusion Geofoam 

tests (test 1 and 3), there were only minor differences in the force-displacement curves.  

Initially, it was hypothesized that by doubling the thickness of the Geofoam, this would 

produce a more desirable displacement behavior.  Based on test 3 results, this is true only 

for pipes undergoing relatively small displacements.  
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Localized, nonuniform strain greatly influenced the behavior of the compressible 

inclusion.  As the Geofoam block was loaded by the pipe, the zone immediately around 

the pipe compressed first in a nonuniform manner (Figure 52). From this figure, the 

location of the pipe against the Geofoam block is shown. In addition, there are matching 

failures zones on each side of the pipe’ s compression zone. These failures are likely a 

combination of tension and shear failure. More difficult to observe was how the Geofoam 

was compressed differentially by the pipe.  The compressed material around the pipe seat 

exhibits rings of compressed Geofoam beads which gradually increase in size away from 

the pipe contact area until they finally disappear completely (Figure 52). These 

observations show that the EPS has developed nonuniform localized strain, especially 

around the pipe penetration. This localized strain and subsequent strain hardening of the 

EPS at large pipe displacement allowed for the block itself to be push laterally into the 

sand mass placed adjacent to the block.   Thus, the block tended to act as a large plate 

moving through the soil mass, producing higher lateral resistance as the pipe 

displacements became larger. 

The light-weight cover system of test 4 had superior performance to the other three 

tests.  The concept of decreasing the lateral earth forces by reducing the weight of the 

cover material appears to be more efficient that using a compressible inclusion for loose 

sand backfill. This concept can be applied to the general construction of pipe-trench 

systems regardless of the backfill media placed around the pipe. In concept, a wide trench 

can be constructed and the pipe covered with a veneer of sand. The remaining backfill 

cover can be constructed with EPS block to the required elevation, which produces low 

vertical stress on the pipe. 
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Figure 52. Localized deformation of an EPS block loaded by pipe in the trench box 
 

Thus, constructed in this manner, the pipe will act as if it is shallowly buried and 

move relatively freely through the thin sand bedding and cover. This light-weight cover 

behavior was explored by Yoshikaze and Sakanoue (2003). They used a similar 

configuration to test 4, and their results for normalized force are shown in Figure 53, with 

the EPS cover system reducing the normalized force by as much as 60%. The results for 

test 4 from this program show a 62% reduction. Thus, based on the results from this 

program, it appears that the light-weight application of EPS is more efficient than a 

compressible inclusion for reducing stresses on a pipe undergoing horizontal 

displacement in a trench, as long as the trench can be excavated sufficiently wide to 

accommodate the magnitude of the horizontal displacement. 
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CHAPTER 6 
 

 NUMERICAL MODELING OF LATERAL TESTS 
 

Many different soil types, geometries and fault crossing scenarios are possible 

involving the future application of EPS Geofoam cover systems for steel pipelines 

crossing active strike-slip faults. Because it is cost prohibitive to conduct full-scale or 

even reduced-scale tests to evaluate the force-displacement characteristics for all cases, 

numerical modeling can play an important role in the development and assessment of 

these systems.  Numerical modeling of various fault crossings is less expensive and 

allows the designer to parametrically examine ways of mitigating the potential damage to 

the pipeline by evaluating various Geofoam geometries and configurations. As part of 

this research program, a series of numerical models were developed to evaluate the 

experimental results of the uplift tests and see if such modeling could be used as an 

evaluation tool. In addition, the force-displacement relationships obtained from the 

experiments previously discussed provide the basis for development of other techniques 

that may not entirely rely on numerical modeling. Thus, the force-displacement 

relationships, or nonlinear springs, developed herein are important to the evaluation and 

design of pipeline crossings undergoing vertical offset, regardless of the numerical 

scheme developed to perform the evaluation.  
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 Numerical Modeling Program 

The numerical model chosen for this research is the finite difference analysis program 

FLAC version 5.01.432 (Fast Lagrangian Analysis of Continua) from Itasca software of 

Minneapolis Minnesota. FLAC uses the explicit finite difference method for its analysis. 

FLAC2D simulates the deformations and system response of continuous systems built of 

soil, rock or other materials that undergo plastic flow when their yield limits are reached. 

It also has the capability of modeling structural elements placed in and atop geomaterials. 

Geomaterials are represented in a manner similar to a finite element formulation by 

elements (i.e., zones) that form a grid which is adjusted by the user to fit the shape of the 

modeled object. However, unlike the finite element method, which does the calculations 

at the element level, the finite difference technique does the calculations at the nodes and 

the area properties as assigned to the nodes. Each element (i.e., zone) in the finite 

difference mesh behaves according to a prescribed linear or nonlinear stress-strain law in 

response to the applied forces or displacements. The material in the model can yield and 

flow in response to loads and the grid can deform (in large-strain mode) and move with 

the material that is represented. The explicit, Lagrangian calculation scheme used in 

FLAC ensures that plastic yield and flow of geomaterials are modeled accurately. 

Because no matrices are formed, large two-dimensional calculations can be made without 

excessive memory requirements. The finite element method, in contrast, does all the 

calculations in a series of local and global stiffness matrices.  

The drawbacks of the explicit finite difference formulation are longer computer run 

time and a significant number of iterations required to find a convergent solution. In 

comparison, finite element programs generally obtain a solution more quickly, but 
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require much more memory. In addition, finite element programs also become unstable 

when large strain and/or grid separation develops in the model; both of these situations 

were encountered while modeling the Geofoam full-scale tests.  In contrast, the explicit 

finite difference method is much more robust in dealing with large strain and grid 

separation and was successful in modeling these cases.  

One additional feature that gives FLAC a distinct modeling advantage is the 

interfaces used between different geomaterials. Many numerical analysis programs 

contain interface elements between structural elements and geomaterial elements; 

nonetheless, FLAC is especially suited for placing interfaces between geomaterials 

elements themselves. These interfaces were required when dealing with EPS Geofoam 

and its interaction with the surrounding soil. EPS Geofoam has internal strength 

properties of cohesion and friction, but interacts with surrounding soil masses with 

distinctly different stiffness, cohesive, adhesive and frictional interface properties than 

defined by internal strength and stiffness properties. 

The main advantage in using FLAC for the analysis of Geofoam systems is its 

powerful built-in programming language, FISH (short for FLACish). With this feature, 

the user can write FISH code that implements functions that give more control to the 

modeling process.  In addition, FISH code can be used to define alternative constitutive 

soil models, if so desired. This is a unique capability to FLAC users who wish to tailor 

their analyses to suit specific needs that arise which are unique to specific geo-

engineering problems. 

Once the force-displacement behavior of the uplifting system is found from the FLAC 

modeling, the designer may choose to use a finite element program (e.g., ANSYS or 
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PIPLIN) to complete the analysis of the pipeline; or the designer may use FLAC and/or 

FLAC3D to do the same analysis and couple the pipe analysis with the soil/Geofoam 

modeling.  

 

 Benchmark Lateral Pipe Movement Modeling 

 The first step in the numerical modeling process is to begin with simple systems 

before progressing to more complex ones like those presented in the box testing 

discussed in Chapter 5. The process of building up the model begins with benchmarking, 

or comparing the simple model with results from the geotechnical literature. In this case, 

the benchmarking was done by comparing the modeling results with those from 

Trautmann and O’ Rourke (1984). Their tests consisted of simple geometries and uniform 

sand placed carefully into a homogenous mass; afterwards, a small pipe was pushed 

laterally into the sand. This system is simple, and therefore more repeatable than the full-

scale box tests with EPS Geofoam analyzed in this dissertation.   

The FLAC model was initiated to the same dimensions as the Trautmann and 

O’ Rourke (1984) tests. Although many tests were conducted by these authors, only a few 

were chosen for the benchmarking process. They used three different densities of sands in 

their testing, with a large number of burial depths.  

In this benchmarking study, six of their tests were modeled herein. At least one model 

for each of the three relative densities of sand was analyzed and models were developed 

for three burial depths. The tests modeled are summarized in Table 15. 
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Table 15. FLAC bencharking models 

Model 
Burial 

Depth / Pipe 

Diameter 

Relative 

Density of 

Sand Fill 

Sand 

Density    

(kN/m3) 

Friction 

Angle     

(deg) 

Dilati

on     

(deg) 

1 2 Loose 15.6 30 0 

2 6 Loose 15.6 30 0 

3 2 Medium 
Dense 17.0 34 0 

4 6 Medium 
Dense 17.0 36 2 

5 11 Medium 
Dense 17.0 36 2 

6 6 Dense 18.4 42 10 

7 11 Dense 18.4 48 16 

 

     A sample of the FLAC geometry for the models is shown in Figure 54.  The 

dimensions of the sand volume and the pipe are the same as those in Trautmann and 

O’ Rourke (1984). In the modeled geometry, the pipe was placed nearer to one side and 

pushed away from that side into the soil mass. The pipe was pushed at a constant rate in 

FLAC until numerical instability occurred, which was usually less movement than the 

end of the test data record. The sand was treated as a Mohr-Coulomb material with 

constant modulus, dilation and friction angle. No cohesive strength or tensile strength 

was assumed. The soil density, friction angle and dilation were provided by Trautmann 

and O’ Rourke in their test background information. Bulk and shear moduli were assumed 

for each model from the relative density of the soil using similar materials found in the 

Duncan et al. (1980) soil library. The numerical code is presented in Appendix A. 
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The model was initiated by adding the sand in lifts with the pipe added at the correct 

lift. The model was run to static equilibrium under gravity loading. The FLAC code was 

then switched to large strain mode, and the pipe is pushed at a constant rate into the soil 

mass (see left side in Figure 54).  The normal forces on the pipe were tracked by FISH 

code and summed to produce the total soil resisting force at incremental displacements. 

The resulting force-displacement curves for all 7 tests modeled are plotted in Figure 55. 

In Figure 55, the force-displacement relationships are shown for comparison. Based on 

these results and common intuition, it is clear that modeling results for deeper pipe burial 

depths produce greater resisting forces for all soil densities modeled.  

The individual test curves are plotted along with the original Trautmann and 

O’ Rourke (1984) test data in Appendix I. The FLAC models for the loose sand tests tend 

to overpredict forces by 9%, especially for shallow embedment. For the medium dense 

sand tests, the FLAC model tends to match the test curves well, except for the case of 

shallow embedment. When the FLAC results are compared to the dense sand test data, 

the FLAC models tend to underpredict the postpeak behavior by 13%. The FLAC model 

performs better for deeper embedment depths and for medium dense sands; however, the 

model is less accurate for shallow embedment and for sands with large postpeak 

softening.  In summary, it was concluded that the FLAC modeling approach was able to 

predict reasonably the force-displacement behavior of the benchmark test data done by 

Trautmann and O’ Rourke (1984) with only a simple understanding of the sand’ s 

constitutive properties from basic testing provided by Trautmann and O’ Rourke. 
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 Lateral Pipe Test FLAC Modeling 

     The lateral pipe movement tests discussed in Chapter 5 were modeled in FLAC to see 

if the actual force-displacement relationships could be simulated by FLAC for the 4 tests 

conducted. The same numerical procedure used in the benchmark modeling was used. 

The model was first built up to an initial static solution under gravity forces, followed by 

the initiation of lateral pipe movement at a constant rate. The model geometry was 

developed for the same scale as the trench box tests. The sand was modeled as a Mohr-

Coulomb material, while the Geofoam was modeled as a nonlinear elastic material 

defined by the complex hyperbolic model developed for EPS15 from Chapter 3. 

Properties of the sand material used in the FLAC models are shown in Table 16. 

     The modeling progression began with the sand only test (test 2), followed by the 

Geofoam cover test (test 4).  These were evaluated before tests 1 and 3, which represent 

the test where the pipe pushed horizontally into Geofoam. This progression was chosen 

because it progressed from the simplest to most complex case.  

 

Table 16. Sand material properties for lateral FLAC modeling 

Density 

Kg/m3 

K 

kPa 

G 

kPa 

φ 

deg 

c 

kPa 

T 

kPa 

ψ 

deg 

1602 9300 5600 32 0 0 0 
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    The FLAC model results for the sand only box test are shown in Figure 56. The FLAC 

output matches the experimental results well until a displacement of about 60mm. After 

this, the experimental results showed a slight decrease in the resistance of the sand to pipe 

penetration. The FLAC model continues with a slight increase. It is unclear what caused 

the divergence at this point, but it was concluded that the FLAC model had successfully 

predicted the force-displacement curve for this case.  

     Next, the case of the Geofoam cover overlaying the sand surrounding the pipe was 

modeled (test 4). The FLAC modeling results are shown along with the test data in Figure 

57. This comparison demonstrates that the FLAC model matches the test data well until a 

displacement of about 12 mm. After this, the FLAC model tends to slightly overpredict 

the force-displacement behavior by about 11% which is considered to be a reasonable 

difference between numerical prediction and experimental data. At the end of the FLAC 

modeling results, this difference had decreased to about 4%.  

     The more complex models, including EPS15 placed in compression by the pipe, are 

presented as follows. The first test conducted was modeled (i.e., a single Geofoam block 

adjacent to the pipe) so that the pipe was horizontally into the EPS block backed by the 

surrounding sand backfill. The Geofoam was modeled using the complex hyperbolic 

model for EPS 15 (Chapter 4). Figure 58 shows the calculated force-displacement 

relationship versus the experimental data. The FLAC modeling (Figure 58) provides a 

reasonable estimate of the experimental data up to a displacement of about 140 mm; after 

this, numerical instability occurred in the FLAC model.  
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     The final test modeled in FLAC (i.e., test 3) was that of two Geofoam blocks placed 

side-by-side abutting against the pipe with the remaining part of the trench box filled with 

sand. The FLAC modeling was conducted in the same manner as previous models with 

the additional width of Geofoam added (i.e., total of 2 blocks wide). The results of the 

FLAC model are compared with the experimental data in Figure 59. These results 

indicate that the FLAC modeling is reasonable for predicting the force-displacement 

relationship up to about 140 mm of displacement, after which numerical instability in the 

FLAC model occurred. The initial match of the curve is not perfect (i.e., displacement 

below 50 mm), but the FLAC modeling results matches the experimental data once again 

at 50 mm of displacement.  

 

 Conclusions 

     In all, the relatively simple FLAC models of horizontal pipe movement in backfill 

(with and without EPS) reasonably explain the experimental data. When this is 

considered with the benchmarking of the FLAC modeling using the Trautmann and 

O’ Rourke (1984) results, as discussed in Chapter 5, it is concluded that FLAC can 

reasonably estimate the nonlinear force-displacement relationship for cases with or 

without Geofoam. In addition, it is also apparent that the Complex Hyperbolic Model 

(Chapter 3) can be used to model the Geofoam-pipe interaction of a pipe moving into the 

EPS block. The modeling exercises and comparisons of the FLAC modeling approach 

can be applied to more complex geometries and soil conditions, as subsequently 

discussed in Chapters 8 and 9. 
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CHAPTER 7 
 

 UPLIFT SOIL-GEOFOAM-PIPELINE TESTING 
 

 Background 

     Two full-scale uplift tests were performed on pipes with soil and Geofoam covers, 

respectively.  The uplift tests were designed and constructed to obtain, as reasonably as 

possible, 2D plane strain conditions.  The pipe was installed in trenches with uniform 

cross-sectional areas and end effects were minimized. The uplift imposed on the buried 

pipe was similar to that encountered by a steel pipeline during normal faulting on the 

downthrown side of the fault. 

     Two tests were performed at a location provided by Questar Corporation. The first test 

was a baseline test of a pipeline uplifting through a native soil backfill trench. The second 

was a pipeline test uplifting through an EPS Geofoam cover. The pipes were buried to the 

same depth below the surface and both included the same thickness of granular backfill 

that was compacted at the surface. The pipes used in the two tests were grade X42 with 

an outer diameter of 324 mm, and wall thickness of 6.5 mm.  During each test, the uplift 

force, displacement of the pipe and the stresses within the backfill mass were monitored 

continuously. Photographs and video were taken of the experiments for additional 

analysis and modeling. A pressure film was also used to measure the contact stress on the 

Geofoam that developed at the pipe/Geofoam contact point.  

147

blingwall
Rectangle



 

 

     The results of the tests showed that the EPS Geofoam cover system significantly 

reduced the uplift force when compared with the native backfill case. In addition, the 

vertical displacement required to reach the peak uplift force was increased over that of 

the native backfill case.  From these data, the soil-structure interaction relation (i.e., 

nonlinear spring relation) of a pipeline undergoing normal faulting was developed. It was 

concluded that the reduction in forces from the soil-structure interaction with the 

Geofoam cover case can significant reduced steel pipeline distress for cases where the 

pipe is subjected to normal (i.e., vertical) faulting. 

 

 Purpose of Testing 

     When large, steel pipelines cross active faults, protection of the pipeline to potentially 

damaging permanent ground deformations must be considered. As the normal fault 

ruptures, the pipeline on the downthrown side of the fault attempts to lift upwards, 

relatively, through the trench backfill. This uplift places significant loads on the pipeline 

that could lead to excessive bending and/or rupture of the pipe. 

     This chapter investigates the placement of an EPS Geofoam backfill cover system 

over the pipeline to protect it from such damage. In order to design an EPS cover 

protection system, the uplift force-displacement relationship (i.e., nonlinear Winkler 

spring) must be evaluated. This can be done through a combination of laboratory and 

full-scale testing and numerical modeling of these test data. This chapter details the full-

scale testing done to measure the force-displacement relationship of an EPS Geofoam 

cover system and a conventional backfill cover subjected to pipe uplift. 

148



 

 

An initial modeling report for Questar Corporation was completed in August of 

2007 that used numerical modeling of a prototype EPS cover system (Chapter 2).  This 

evaluation suggested that a light-weight EPS cover can significantly reduce the stresses, 

strains and moments on a pipeline undergoing vertical faulting and/or other types of 

vertical permanent ground deformation.   This chapter is a continuance of this work and 

presents the experimental data that were obtained to support additional numerical 

modeling described in Chapter 10. 

 

 Experimental Setup 

Site Conditions 

     The pipe uplift tests were conducted at the Fugal and Sons Company equipment yard 

on 700 North Street in Lindon, Utah. The approximate latitude and longitude for the site 

are  40.3512�N and 111.7359�W. This location was a level, open site in Utah County in 

the State of Utah that currently is used as Fugal’ s construction yard. The upper 0.914 m 

of the existing soil profile was a sandy, random fill from previous site grading. This 

material included some cobbles and a significant amount of clay. Underneath the fill was 

a thick layer of medium stiff brown silty clay down to the bottom of the trench 

excavations. This layer also had some fine-grained sands and was plastic. The moisture 

content of the upper fill layer varied with depth. The water content at the bottom of this 

layer was 13.4%. The water content of the native, brown, silty clay ranged from 13.4 to 

18%. Groundwater was not encountered in the construction of the two trenches, nor was 

it found in the samples obtained from the push-in hand sampler. Bulk samples were taken 
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of the soils from each of the two surficial layers. Details of the laboratory test program, 

including triaxial testing on the soil samples from the site, are presented in this report.  

     Backfill for the first test was a mix of surficial sandy fill and native silty clays 

excavated from the trenches which consisted of a clayey soil with sand and cobbles.  The 

top 457 mm of the trench sections was a granular fill with 100% passing the 25 mm 

sieve.  This fill was angular, well graded, with nonplastic fines. 

 

Soils Characterization at Uplift Test 

     At the time of excavation and backfilling of the two trenches for the uplift tests, a 

number of soil samples were taken for evaluation. Samples were taken from each layer or 

soil type present and geotechnical tests were performed on the samples. These tests 

included  grain-size analyses, Atterberg Limits and strength tests, including unsaturated 

triaxial tests. The results from these tests were used to characterize the soil’ s strength and 

deformation properties and relevant inputs for numerical modeling of the uplift tests.   

     The soil that was visually classified as the upper native sand layer shows a well-

graded particle size distribution with 20% fines (Figure 60).  In addition, the grain-size 

distribution for the various soils is shown in Figure 60. These curves are typical but may 

not represent the entirety of the site. The grain size distribution curves for the road base 

used for the two tests had similar grain size distributions, indicating that the samples were 

from the same stockpile. The native lower clay layer was poorly graded with 72% fines 

(less than 0.075 mm in diameter). 
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The strength and deformation characteristics of a given soil are highly influenced 

by the amount of fines present in the soil. Generally, soils with high fines content are 

softer, more susceptible to changes in moisture content and are more sensitive to the 

compaction method used.  

     Sand cone tests were also performed to measure the in-situ density of the soils. Four 

sand cone tests were completed:  two on the compacted clayey fill used for the soil 

backfill test  and two on the UTBC. The results of the sand cone tests are given in Table 

17.   

     The water content of a soil and its plasticity index are important geotechnical 

properties, especially for soils with significant fines content. Table 18 shows the results 

of the water content tests performed on the various samples. Only the native clay layer 

and the clayey fill had any significant plasticity.   

 

Table 17. Sand cone test results 

Sample Wet 
Soil 

Dry 
Soil Volume Moist 

Density 
Dry 

Density 

Moist 
Unit 

Weight 

Dry 
Unit 

Weight 

Water 
Content 

------------ grams grams cm3 g/cm3 g/cm3 kN/m3 kN/m3 % 

Clayey 
Fill 1957.8 1593.91 1081.35 1.81 1.47 18.12 15.64 15.92 

Clayey 
Fill 1024.11 882.98 571.1 1.79 1.55 17.94 15.48 15.98 

Road 
base 
(Clay 

Section) 

1811.31 1727.02 923.8 1.96 1.87 19.61 18.70 4.88 

Road 
base 

(Foam 
Section) 

2102.94 2018.74 108.35 1.94 1.87 19.45 18.68 4.17 
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Table 18. Moisture content test results 

 

 

 

 

 

 

      

 

  

     

      Several tests were performed to characterize the shear strength of the soils, including 

direct shear and triaxial shear tests. The direct shear test was chosen for the road base 

samples because of the angularity of the particles and the sharpness of the gravels.   For 

these tests, the soil sample recompacted to the appropriate in situ, compacted density. The 

sample was then sheared to determine its strength along the shearing plane located at 

midheight of the 50.8 mm sample. A series of tests at increasing confining pressures were 

performed to estimate the Mohr-Coulomb envelope for the soil. The direct shear force-

displacement curves for the UTBC are presented in Figure 61, and the failure envelope is 

shown in Figure 62. The results in Figure 62 indicate that the failure envelope for the 

road base was slightly curved. A straight line fit through the data at low stresses suggests 

that the drained friction angle of the UTBC was about 43�.  

Sample Mass Wet 
Soil 

Mass Dry 
Soil 

Mass 
Soil 

Water 
Content 

--------- grams grams grams % 

Bedding 844.28 742.59 101.69 13.69 

Road base (EPS Section) 2102.91 2018.74 84.20 4.17 

Road base (Clay Section) 1811.31 1727.02 84.29 22.83 

Native Clay 1957.81 1593.91 363.90 13.44 

Native Sand 785.44 692.38 93.09 15.92 

Clayey Fill 725.98 626.25 99.73 4.88 

Clayey Fill 1024.11 882.98 141.13 15.98 

153



 

 

 

 

 

 

 

 

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Displacement (mm)

S
he

ar
in

g 
S

tr
es

s 
(k

N
)

Normal Stress  = 1000psf

Normal Stress  = 2000psf

Normal Stress  = 4000psf

Normal Stress  = 16000psf

 

Figure 61. UTBC direct shear test curves 
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     In addition to the direct shear tests, triaxial testing was performed that consisted of 12 

tests:  4 tests on each of the clayey fill, native clay and native sand, respectively.  The 

samples for these tests were consolidated and sheared in a manner to better represent their 

actual failure behavior. Both consolidated undrained (CU) and consolidated drained (CD) 

triaxial tests were performed. The CU tests were performed on backpressure saturated 

specimens. Pore pressure measurements were made in CU testing to determine the 

drained strength properties of the soils in addition to their undrained strength properties.  

     Table 19 shows the results for the 4 CU tests performed in the triaxial test series. 

Among the output results of the CU test are the total and effective cohesion intercept and 

the total and effective friction angle. The CD tests were performed on unsaturated 

samples, save for one exception:  one CD test was run on a backpressure saturated sample 

to assess the effects of saturation on the strength of the soils at the site.  

 

Table 19. CU test results 

Layer γo ωo σ'c σ3f σ'3f σ'df Su c φ c’  φ' 

-------- kN/m3 % kPa kPa kPa kPa kPa kPa deg kPa deg 

Native 
Clay 17.56 17.7 77.8 390.4 39.4 112.1 56.1 60 0 14.4 26.8 

Native 
Clay 17.64 17.8 143.6 442.9 61.1 131.3 65.6 60 0 14.4 26.8 

Native 
Sand 18.34 13.3 191.5 504.1 102.9 209.9 104.9 60 6 0 30.3 

Clayey 
Fill 18.33 16.5 239.4 203.4 122.2 304.9 152.5 60 15.3 0 33.7 
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     A typical stress-strain curve for two of the triaxial tests is shown in Figure 63. This 

figure shows the curves for two unsaturated consolidated drained (CD) triaxial tests on 

the lower native clay layer. (The CD test is performed on the consolidated sample; but 

sheared at a sufficiently slow rate so water can escape the sample; hence, no excess pore 

water pressure is generated during the shear phase.)  In a CD test for an unsaturated soil, 

the sample is consolidated and tested at its in situ or compacted water content. Drainage 

is allowed and the test is run sufficiently slowly so shear-induced pore water pressures 

are not generated. Volume change in the sample for an unsaturated CD triaxial test is 

calculated by measuring changes in water volume in the outer cell.  In contrast, for a 

saturated CD test, the sample volume change is calculated for the amount of water 

flowing in or out of the sample from the inner cell. Table 20 shows the consolidated 

drained (CD) triaxial compression test results, Figure 63 shows typical triaxial data and 

Table 21 shows the unsaturated CD triaxial test results. The triaxial results for the entire 

series are given in Table 22, which includes the water content, Atterberg Limits and unit 

weight for the various soils at the uplift test site.  

 

Table 20. CD triaxial test results 

Soil 
Layer γf γo ωo σ'c σ'3f σ'1f σ'df 

Stress 
Ratio c’  φ' 

φ'cs-

pk 
 

-------- kN/m3 kN/m3 % kPa kPa kPa kPa -------- kPa deg deg 

Native 
Sand 19.75 17.40 13.49 77.8 77.8 273.2 195.4 3.51 0 34.6 33.8 
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Pipe and Geofoam 

     The pipes that were used in the uplift tests were grade X42 with an outer diameter of 

323.9 mm and a wall thickness of approximately 6.5 mm. The pipe was cut into two 4.57 

m lengths. Both sections of pipe were visually inspected for defects, and none were 

observed prior to placement in the trenches. On each end, a 3 m #4 reinforcing bar tell-

tale was welded in a vertical position to assist in measuring the displacement uplift. The 

reinforcing bar was observed to be in good condition. 

     The Geofoam blocks that were used in the Geofoam cover trench were EPS 29 (i.e., 

density of 29 kg/m3), which is a relatively dense and stiff EPS Geofoam block 

manufactured by ACH Foam in Murray, Utah. The blocks were molded and cut in the 

factory prior to delivery.  (EPS 29 is in the mid to upper range of Geofoam products in 

terms of its strength and stiffness. This density was chosen by Questar Corporation 

because EPS 29 was used along existing pipeline alignments, such as the reconstruction 

done along 3300 South Street in Salt Lake City.) There were four blocks used in the 

experiment; each was visually inspected and observed to be in good condition with only a 

few surface markings from shipping and handling. No tool marks from onsite installation 

were observed on the blocks prior to placement. The blocks came in two pairs with 

approximately the same dimensions. Two of the blocks were 1219 x 914 x 914 mm and 

the other two blocks were 1067 x 914 x 914 mm. Slots were cut in the block on site 

during installation to allow the crane rigging to pass between blocks. These slots were cut 

using a chain-saw and were no larger than 127 mm wide and 50 mm deep on the side of 

the block.  
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Experimental Design 

     The trench and cover cross-sections were predetermined by Questar gas Company and 

the University of Utah for the tests prior to construction. The first test cross-section was 

that of the native soil backfill.  This served as a baseline test to compare with the results 

from the EPS Geofoam cover system. A schematic drawing of the native soil backfill test 

cross-section is shown in Figure 64. In constructing this test, the trench was over-

excavated 150 mm and bedding sand was placed beneath the pipe.  The pipe was fitted 

with crane rigging and placed atop the bedding sand. Subsequently, other lifts of sand 

were placed along the sides of the pipe until the pipe was covered with 150 mm of sand. 

This bedding and sand was placed loosely and was not compacted. 

    Above the 150 mm of bedding sand, the excavation spoil was placed and compacted in 

the trench up to 457 mm below the ground surface. This material was compacted with an 

impact-type compactor (i.e., “ jumping jack” ).  The backfill was tested with a sand cone 

test to measure its density. Two total earth pressure cells were horizontally embedded in 

the backfill at 304 mm and 610 mm above the top of the pipe. Above the random clayey 

backfill from the site, and beneath the 457mm of UTBC, another earth pressure cell was 

placed, and the 457 mm of granular material (UTBC) was placed and compacted with a 

self-propelled tamping foot compactor with vibrating drums. 

     The crane rigging that was attached to the pipe was kept as vertical as possible 

throughout backfill and compaction. String pod potentiometers were attached to the rebar 

tell-tale. The string pods were suspended by lumber reference frames that were founded 

outside the zone of uplift so that absolute uplift measurements could be made.   
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     The second trench was the EPS Geofoam cover system cross-section. For this test, the 

trench was excavated and the pipe was placed in bedding sand similar to the first trench. 

The crane rigging was again placed at 1.143 m from each end of the pipe and kept 

vertical throughout backfill and compaction. An earth pressure cell was placed on the top 

of the bedding sand. The EPS Geofoam blocks were then placed on the bedding sand, 

which were overlain by the reinforced concrete load distribution slab. A 457 mm layer 

road base was placed over the load distribution slab and compacted.  

     During the construction of this trench, it must be noted that the clayey soils on the 

sides of the trench remained vertical during Geofoam block placement. In some places, 

the trench walls did not fit tightly against the Geofoam blocks. In these locations, small 

gaps remained throughout the test. 

    An earth pressure cell was placed on top of the Geofoam blocks at the center of the 

trench to measure vertical total earth pressure during testing. A thin layer (< 150 mm) of 

bedding sand was then placed on the blocks to level the next course. The next layer in the 

system was a 152-mm reinforced concrete load distribution slab. The slab was not 

continuous, but consisted of panels that were 1067 mm wide, so that the panels slightly 

overhung the outer edge of the Geofoam blocks. These slabs ran the length of the pipe 

with 152 mm spaces to allow crane rigging to pass through at 1.143 m from each end. 

Above the reinforced concrete slabs, 417 mm of granular material was placed and 

compacted. Figure 65 shows the schematic for this trench and cover system. 

     Figures 66 and 67 show the two completed trench cross sections after construction. 

These figures show the crane rigging which comes to the surface of the soil at the outer 

quarter points of the pipe and trench. 
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Figure 66. Soil backfill trench, with compacted fill 
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Figure 11.14 - EPS Geofoam Trench 

 

 

Figure 67. EPS Geofoam backfill trench 
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 Procedures 

     After construction of the two trenches and cover systems, the site was inactive for two 

days because of scheduling of equipment and personnel. This waiting period allowed the 

soils and Geofoam to come to self-weight equilibrium under their respective vertical and 

horizontal stress states. Appropriate caution signs, fall protection and warnings were 

placed around the site during the delay. No tampering with the equipment and test site 

was observed prior to testing.  

     For the uplift tests, an 890 kN truck mounted crane was mobilized to the site (Figure 

68). A large capacity crane was need for two reasons:  (1) the long boom and reach 

allowed the rigging to be pulled up vertically, to limit horizontal forces to a minimum and 

(2) the high capacity of the crane allowed the uplift to be done in a controlled and slow 

manner in order to avoid any jerking or sudden movement.  

 

 

Figure 68. Tire mounted crane used for uplift tests 
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     After the crane arrived on the site, the boom was raised and the rigging connected to 

the inline tension load cell. The instrumentation cables were connected to the datalogger 

(for resistance-based instruments) and to the readout box (for the two vibrating wire earth 

pressure cells). The data acquisition system was initiated and began to gather data to 

establish the zero-uplift readings. The crane raised the rigging until all slack was taken 

out of the cables and a small amount of tension was placed on the lines. At this time, the 

test was paused as a verification of test setup and instrumentation was performed. 

     When all parties were ready, including video and photography, the crane operator was 

given the signal to begin uplift, as slow as possible (152 mm per minute). At two times in 

each test, uplift was paused for a few seconds to allow the crane operator to inspect the 

rigging to ensure its condition and safety. Data was monitored continuously through these 

pauses and continued until the pipe had completely ruptured the cover system or the 

pipe/cable system had reached a predetermined criterion. The test stopping criterion for 

the soil backfill test was a displacement of 417 mm, or a tensile force in the cables of 712 

kN, or a sudden dramatic failure of the soils in uplift that rendered the displacement data 

useless. For this case, the third criterion was first met. For the EPS Geofoam cover 

system, the stopping criterion was 762 mm of uplift, or tensile force of 356 kN, or a 

sudden dramatic failure of the soils in uplift. The displacement criterion was first met for 

this test. 

     After the uplift was stopped, additional video and photography of the posttest 

conditions were done to document the failure state of each experiment. The pipe was then 

lowered slowly by the crane operator until slack was observed in the lines. Data 

acquisition was stopped at this point. After both tests were completed, each trench was 

169



 

 

excavated carefully to retrieve instruments and ascertain the conditions of both pipes and 

the EPS Geofoam blocks.  

 

 Observations 

Soil Backfill Test 

     The uplift of the soil backfilled trench test was actually performed second. This test 

proceeded much slower than the EPS Geofoam cover testing due to the larger force 

required to uplift the backfill-soil system. Because of this, the crane was able to lift this 

system at a much slower rate, allowing for more time series data to be acquired. The 

uplift of this section was unremarkable, until the peak uplift force was reached. After this, 

the west end of the pipe began to uplift much faster than the east end. A few seconds after 

the creation of this imbalance, the west end of the pipe rapidly uplifted through the 

backfill while the east end continued to uplift slowly. This eccentric uplift placed the pipe 

severely out of level and the sudden uplift of the west end destroyed the string pot 

potentiometer on that end of the pipe, rendering further displacement data useless. 

Fortunately all this occurred after the peak force of uplift had been recorded, so this 

behavior only affected the latter part of the postpeak displacement.  In addition, no 

detectable bending in the pipe was observed before or after the catastrophic failure on the 

west end of the trench system. Figure 69 shows the differences in uplift displacements 

between the pipe ends for the soil backfill trench section. 
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Figure 69. Uplifted soil backfill system 
 

EPS Geofoam Test 

     Figure 70 shows the uplifted EPS Geofoam section. During uplift of the EPS Geofoam 

section, very little compression of the Geofoam was observed during testing. The ends 

did not appear to be compressed to any observable degree even after the peak force was 

reached. (A grid had been drawn on the Geofoam block face to track the deformations of 

the foam block.) However, after excavation of the Geofoam blocks, it was seen that along 

the length of the pipe, the Geofoam compressed about 50 to 75 mm. Figure 71 shows the 

deformations along the bottom of one of the EPS Geofoam blocks. 
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Figure 70. Uplifted EPS Geofoam system 
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Figure 71. Deformations along bottom of Geofoam block 
 

 

     In contrast to the soil backfill test, the uplift of the EPS Geofoam system was very 

uniform with little rotation of the pipe occurring during uplift.  The string pods attached 

to the east and west sides of the pipe showed approximately 30.5 mm of maximum 

differential displacement during the test. Because the uplift resistance was so low for the 

EPS cover, this offered little resistance to the crane during uplift; maintaining a slow 

uplift rate was difficult.  As before, no pipe bending was observed at any time.   

     Figure 71 shows that there was no significant internal deformation of the Geofoam 

block as seen by the uniform grid that had been marked on the block prior to testing. 

Figure 70 also shows the amount of final displacement achieved during this test. It was 
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noted that the load distribution slab had protected the Geofoam from damage during 

uplift and the failure was a sliding failure along the block-trench wall interface.  

 

  Vertical Pipe Movement Results 

     The force-displacement and stress data gathered during the tests were imported into 

Excel for analysis. The results of the force and displacement data for the soil backfill test 

are shown in Figure 72. Both the raw data gathered by the instruments and the net results 

are presented. (The slopes of the curve are the nonlinear spring relations needed for 

pipeline evaluations for this case). Note that the soil backfill system had a peak force of 

520 kN at a displacement of 70 mm. The soil backfill system also had an initial force of 

about 100 kN at very small displacement (Figure 72).  This approximately corresponds to 

the weight of the system and represents the vertical uplift force prior to any significant 

mobilization of the soil strength in the cover. SP18 and SP20 are the two vertical 

displacement transducers from the soil backfill test.  

      There is a large amount of scatter in the displacement data gathered in the testing. 

However, the force data had very little scatter. The source of the scatter in the 

displacement data is unknown, but there is a possibility that the string-pot displacement 

transducers are affected by changes in displacement rate that occurred at the beginning of 

the soil uplift test, as well as during a pause for safety check during test uplift. The soil 

backfill section showed a large decrease in force after the peak until an approximately 

300 kN residual force was achieved through the end of the test.  
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     The Geofoam section test displacement data are shown in Figure 73 as raw instrument 

readings as a function of time. These instrument readings are in mV/V excitation, with 

two different symbols for the two different displacement transducers used. The scatter in 

the displacement data is more pronounced in one of the transducers, so the net results 

were developed largely from the data set that is more consistent. The relationship 

between readings and displacements is highly nonlinear, and the initial jump in readings 

corresponds to a small actual displacement.        

     The force and displacement data are plotted in Figure 74. The two displacement data 

sets are paired with the force data to show individual data points for the Geofoam section. 

The net force-displacement relationship is overlain in Figure 74 by the individual data 

points. The EPS Geofoam section had an uplift resistance force of 35 kN before any 

displacement was detected in the system, approximately the weight of the system. The 

weight of the system for both sections was mobilized before any displacement was 

recorded by the transducers. This occurred as friction was mobilized along the slip planes 

of the system. The peak force for the EPS Geofoam section was 136 kN at a displacement 

of 188 mm. It is seen in Figure 74 that the slope of the uplift curve was relatively linear 

until approximately 188 mm of displacement where the peak of 136 kN was encountered. 

     Figure 74 shows that the shape of the uplift curve was reasonably linear until the peak 

is reached. Postpeak behavior is manifest by a rapid decrease in force until a vertical pipe 

displacement of about 400 mm. A constant load of 88 kN was attained after a 

displacement of 400 mm. This constant force was measured until the end of the test.  This 

force is largely the resistance of the sliding Geofoam block against the trench side walls, 

since at that range of displacements, the UTBC atop the section had completely sheared.  
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The net results of both the soil and Geofoam sections are shown together in Figure 75 

without data points. 

     Figure 75 is for comparison of the two tests. The slope of a force-displacement curve 

is the stiffness of the system and in linear systems represents the spring constant.  

However, this slope may change depending on the nonlinearity of the uplift behavior. 

Both sections show initial linear behavior. The soil backfill section becomes less linear as 

the peak force is approached than the Geofoam section. The Geofoam section retains a 

much more linear shape through the entire test. Both sections show a decrease in force 

after the peak, though the soil backfill section had a much large decrease both as a total 

force and a percentge of the peak force.  

     The data in Figure 75 show that the stiffness of the EPS Geofoam system was 

approximately an order of magnitude less than that of the soil backfill system. The uplift 

force at peak is divided by the length of the pipe (4.572 m) to find the force/unit length of 

the system. For the soil backfill system, the force/length was 113.7 kN/m. For the EPS 

Geofoam section, the force/length was 29.7 kN/m. Thus, the uplift resistance of the EPS 

Geofoam system was approximately less than that of the soil backfill system by a factor 

of  3.8. 

      A useful way to present the results is to normalize the force displacement data 

(Trautman and O’ Rourke, 1985). The normalization accounts for length of pipe, burial 

depth, and pipe diameter and removes these effects from the results so that the tests can 

be compared more directly. This technique is very common in determination of 

parameters for pipeline design crossing faulting (ALA, 2001, ASCE, 1984, and 

Trautmann and O’ Rourke, 1984).  
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     Figure 76 shows the normalized uplift curves for the two systems. The displacement 

of a pipe in uplift was made dimensionless by dividing the displacement by the pipe 

diameter. The force was normalized for a homogenous trench system by dividing the 

uplift force by the length of the pipe, the pipe diameter, the burial depth and the unit 

weight of the backfill. For a system with several layers, such as these tests, the total uplift 

force was normalized by dividing the total force by the pipe length, the pipe diameter and 

the vertical stress on the pipe. Figure 76 has both test curves normalized to the vertical 

stress of a homogeneous soil cover system. Figure 77 shows the normalized data, when 

each curve was normalized by the stress on the pipe from the actual vertical load on the 

pipe in the respective test.  

     From Figure 76, the normalized curves still showed a significant advantage of EPS 

Geofoam in reducing uplift stiffness on the pipe when normalized by a soil unit weight as 

is traditionally done. Note that the relative shapes of the curves did not change between 

Figures 75 and 76. The peak of the normalized force curve is called the uplift factor and 

corresponds to a traditional bearing capacity factor used for downward loading in 

foundation design. The normalized curves recommend for future design are shown in 

Figure 77. This figure shows less of a normalized difference as the masses of the system 

are much different and affect the scale when normalized. Figure 76 is more dramatic a 

presentation, but Figure 77 should be used for design purposes.   

     Figure 77 shows that when normalized to the low vertical stress of an EPS cover 

system, the uplift factors only differ by 38% despite the large difference in total uplift 

force and peak uplift force shown in Figure 75.  
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      The uplift factor for the soil backfill system from this experiment was 10.5. The uplift 

factor for the EPS Geofoam cover system from this experiment was 6.5. A summary of 

the parameters found in these tests for pipeline design crossing normal faults is presented 

in Table 23. Figures 75 through 77 show that the dimensionless displacement of the EPS 

Geofoam section was 2.75 times larger than that of the soil backfill system. 

     Figure 78 shows the earth pressures from the EPS Geofoam test, while Figure 79 

shows the earth pressures measured in the soil backfill test. These results give insight into 

the behavior of the trench system. There are three earth pressure cell stress curves shown 

in Figure 78. The pressure cell placed between the pipe and the Geofoam blocks had the  

 

 

Table 23. Experimental pipe uplift results 

 Stiffness Uplift Factor 

 kN /m/m --------------- 

Soil Backfill 

System 
1625 10.5 

EPS Geofoam 

System 
158 6.5 
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largest recorded force; however, its peculiar shape may be a result of the bedding sand 

flowing downward during uplift between the pipe and blocks in the area of the cell 

producing pressure readings as the stresses concentrated on the cell in a local area. This 

was likely the reason why the EPS Geofoam stress is higher than any of the soil backfill 

stresses that were measured.  

     An important observation from the EPS system was that no significant loads were 

recorded by any of the three pressure cells until 114 mm; this corresponds to about the 

same displacement where there was a change in the slope of the force-displacement curve 

(Figure 75).  

     The pressure cell that was atop the concrete load distribution slab experienced 

essentially no significant increase in vertical stress, suggesting that this part of the system 

moved as a unit, and that the reinforced concrete isolating the stresses. The cell 

positioned underneath the slab, but above the Geofoam block, saw an approximate 

doubling of the vertical stress at that location, and notwithstanding, had a relatively minor 

vertical stress increase when compared to the cell placed beneath the EPS block (Figure 

78). 

     Unfortunately, the pressure cell placed between the pipe and the EPS Geofoam blocks 

had erroneous vertical earth pressure readings, probably due to excessive stress 

concentration. This prevented the modulus of uplift reaction from being calculated from 

this particular test.   

     Figure 79 shows the vertical earth pressure stress results for the soil backfill system. 

The intercept of the curve for the pressure cell placed closest to the pipe shows that 

vertical resistance immediately developed and rapidly increased when compared with the 
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Geofoam system. The pressure cell located farther from the pipe (i.e., pressure cell 

located 1219 mm above the pipe) experienced an initial slight decrease in vertical stress 

and the magnitude of the initial stress increase at this location was about 4.8 kPa. This 

suggests that the zone of significant stress increase and the development of the potential 

failure surface were reasonably removed from the centerline of the trench.  

     The cell positioned  610 mm above the pipe showed a significant decrease in load at a 

displacement of 119 mm, which approximately corresponds to the marked drop off in 

total uplift force seen in Figure 75. It is interesting to note that the cell located 304 mm 

above the pipe did not experience any decrease in load until about 57 mm of additional 

displacement.  

     The final observation obtained from the review of the earth pressure cell data was that 

none of the pressure cells recorded initial vertical stress conditions corresponding to those 

predicted by a simple vertical stress calculation. All the recorded initial vertical stresses 

were lower than expected, except the cell atop the load distribution cell (which was 

nearly that of predicted). For the pressure cells placed in the EPS Geofoam system, this is 

easily explained. The blocks were placed tightly into the trench, with the side walls of the 

trench gripping the blocks in areas at some locations, preventing a complete seating of 

the blocks on the underlying bedding sand. Also, the load distribution slab overhung the 

EPS blocks and rested on native material along its edges. These two facts likely 

contribute to the behavior seen in the pressure cells for the EPS cover system. For the soil 

backfill system, the lower vertical stresses may be due to the development of arching.  
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  Conclusions 

     Two full-scale uplift tests were performed for steel pipes in plane strain uplift to 

determine design parameters for steel pipelines crossing active, normal faults. One of the 

tests used EPS Geofoam backfill cover as a potential mitigation strategy. The other test 

used soil backfill for a comparison case. The EPS Geofoam section had four times less 

uplift resistance than the soil backfill section. The EPS Geofoam section also had 2.75 

times more displacement at the peak resistance. The stiffness of the EPS Geofoam system 

was an order of magnitude less than the stiffness of the soil backfill system. The results 

showed that EPS Geofoam gives a less stiff and more manageable uplift condition on a 

steel pipeline than native backfill soil. 
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CHAPTER 8 
 

 HAND CALCULATION OF UPLIFT RESISTANCE 
 

Though not capable of estimating the displacements at which uplift resistance occurs, 

simple calculations can be used to estimate the uplift of a pipe with or without an EPS 

Geofoam cover system. These simple hand calculations are limit equilibrium solutions, 

and are similar in their construction and derivation to bearing capacity problems. The 

most basic hand calculations for uplift resistance are based on the uplift of plate anchors 

(Trauntman et al., 1984). More complex hand calculations include dilation (Cheuk et al., 

2005). Previously published equations for the uplift of pipes assume a homogenous 

media through which the pipe is uplifting. Those equations assume one of three failure 

modes, as illustrated in Figure 80. The first failure mode is the simple sliding block with 

vertical slip surfaces (e.g., trench side walls). The second failure mode is a sliding block 

with inclined slip surfaces (e.g., sand), while the third is soil flow around the pipe (e.g., 

liquefied soils and very loose sands). For uplift in sands, Cheuk et al. (2005) recommend 

their equation because it incorporates both the stress state at the beginning of uplift and 

dilation. For the uplift in clays, Trautmann et al. (1984) recommend Vesic’ s equation of 

uplift from cavity expansion theory. The effects of pipelines in uplift have also been 

grossly accounted for in the simplified test results for homogeneous sand systems by 

Trautmann and O’ Rourke (1984) and other authors from the results of small-scale 

laboratory tests and extrapolations of cavity expansion theories.   
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Figure 80. Possible uplift scenarios 

 

     The field uplift tests performed in this research had complicated geometry and were 

heterogeneous, so a calculation assuming a simple vertical sliding block in a multi-

layered system is preferable.  

     The simple sliding vertical sliding block is a limit-equilibrium solution that assumes 

that the resistance to uplift is formed from two components, the weight of the uplifting 

block and the shear resistance along the sides of the uplifting block. The general equation 

for a simple sliding block is shown in Equation 13, or alternatively in Equation 14. 
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 where F is equal to the uplift force, τ is the shear stress induced by uplift on the trench 

side wall, or portion thereof, and A is the area of the side walls on which the stress is 

acting. The first term in the equation is the sliding block and the second term is the mass 

of the uplifted block. The term L is the length of the pipe, D is the width of the uplift 

block, while γ is the unit weight of the layer, and t is the thickness of a particular layer. 

The shear stress τ is a function of the normal stress (σΝ), friction (φ) and adhesion (a) 

between uplifting mass and the trench walls. The normal stress for a vertically uplifting 

mass of soil between the mass and trench walls is the horizontal stress (σΗ). The equation 

for the maximum shear stress τ between two moving bodies (assuming no dilation to the 

soil) is calculated with Equation 15. 

 

 iihi a+= φστ tan                                                        (15) 

 

     The friction angle can be replaced in this equation by an interface friction angle (δ). 

The friction and adhesion between two bodies can be determined through laboratory 

direct shear tests. The horizontal stress σΗ is calculated by multiplying the vertical stress 

σV by a constant Ko.  

 

 ovh Kσσ =                                                          (16) 

 

     The vertical stress is found by summing the unit weight times the thickness of all 

layers above the point of interest. For calculation simplicity, it is common to use the 

vertical (and horizontal) stress at the midpoint of the area on which the shear stress is 
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being calculated, i.e., the midpoint of a layer. The coefficient of lateral earth pressure, Ko, 

is estimated by one of three ways in the absence of direct testing of the lateral earth 

pressure. The first way is common to geotechnical engineering, the Jaky Equation, (Jaky 

1944) and is Equations 17 and 18. Equations 17 and 18 differ in that Equation 17 is for 

normally consolidated soils, and/or sands, while Equation 18 is for overconsolidated soils 

and/or clays. 

 

)sin1( φ−=−sandoK                                                    (17) 

 

8.0)sin1( OCRK clayo φ−=−                                            (18) 

  

     The term OCR is the over-consolidation ratio of the soil and is defined as the ratio 

between the maximum past pressure of the soil (or its yield stress) divided by the current 

stress state. The OCR of a soil is the most difficult parameter in the above equation to 

estimate. It can be found from direct testing, indirect in-situ test result correlations or by 

empirical correlations from the geotechnical literature. The second way to estimate Ko is 

from empirical correlations to soil index properties from the geotechnical literature. The 

Massarsch equation (Holtz and Kovacs, 1981), Equation 19, is preferable for this instance 

because the soils are unsaturated and other correlations require the soil to be saturated 

and knowledge of OCR. For the cohesive soils at this site, we have no direct knowledge 

of OCR. This empirical correlation relies heavily on the Jaky Equation and OCR in its 

development. The third method of estimating Ko is to relate it to Poisson’ s ratio through 

elastic theory, Equation 20 (Itasca, 2005).  
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     For the existing (native) soils present at the full scale uplift tests, there are estimates of 

the water content, liquidity index, friction angle, adhesion and Poisson’ s ratio. There is 

also a known geometry of the problem, including layer thickness, and the unit weights of 

the materials involved. The largest unknown is which is the appropriate vertical stress 

and Ko value to use in the estimate of uplift force for the EPS Geofoam section. In the 

soil backfill section, the properties of the trench walls and trench backfill were very 

similar, so it can be assumed that the horizontal stress between uplifting mass and the 

trench walls at the time of uplift are similar. However, the compaction of the backfill has 

altered the horizontal stress state between trench wall and backfill to some unknown 

value. For a simple calculation, it was assumed that the natural (i.e., Ko) horizontal stress 

state exists. In the EPS Geofoam section, the trench walls and the EPS Geofoam did not 

have full contact during the uplift test, nor did the EPS Geofoam section have the same 

stress state as the surrounding media naturally does.   

     Equation 14 can be extended for the soil backfill section into Equation 21. In Equation 

21, the adhesion between clayey fill and native clay will be taken as the lower of the 

cohesions of the two materials. The frictional interaction between the clayey fill and 

native clay can be treated likewise. The full internal friction angle of the road base was 
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used. All vertical stresses were calculated at the midpoint of each layer. The loose 

bedding sand was ignored, as it flowed around the pipe very quickly in the field tests. The 

sand provided little uplift resistance in the field, and the flow around the pipe is very 

complex and difficult to predict. No predictive equations for loose flowing sands 

providing uplift resistance are available for pipes. 
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     Equation 14 can also be extended for the Geofoam section into Equation 22. In 

Equation 22, the adhesion between EPS and frictional interaction between the clayey fill 

and native clay is taken from direct shear testing shown in Appendix D. The full internal 

friction angle of the road base (UTBC) will be used. The adhesion and friction between 

native sand and the reinforced load distribution slab were estimates at 50% of those of the 

native sand.  
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      The properties to use in the calculation are derived in Chapter 7 and found on Table 

20. (These properties can be varied to show the sensitivity of the analysis in a qualitative 

manner. The properties are here varied by 16% to show a best estimate of the uplift 

resistance by simple sliding block, along with an upper and lower bounds.) Though 

arbitrary, a 16% variation in properties is sufficient to show the sensitivity in the analysis.         

     Table 24 shows a selection of the inputs of simple hand calculations using Equations 

21 and 22 with the material properties shown in Table 20 along with the geometries 

shown in Figures 62 and 63. Interface properties for EPS 39 and native clay are presented 

in Appendix D. Table 25 presents the results of the simple sliding block uplift 

calculations.  

     The results of the simple sliding block, as shown in Table 25, are that the soil backfill 

section test was estimated within 6% for the best estimate case and 10  and 24%, 

respectively, for the upper and lower bounds. The EPS Geofoam section was estimated 

within 4% for the best estimate case and 21 and 13%, respectively, for the upper and 

lower bounds.  

     These results show that a simple sliding block is an adequate method for prediction of 

the peak uplift resistance for a multilayered system for an uplifting pipe at a normal or 

reverse fault crossing. It does not, however, estimate the stiffness of a system, nor the 

displacement at which the peak resistance is mobilized. The postpeak behavior cannot be 

estimated with limit-equilibrium methods; numerical modeling is one option to evaluate 

both the peak uplift resistance and the associated displacement for complex and/or 

multilayered cover systems.  
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Table 24. Select simple sliding block uplift inputs 

Parameter 

Soil Backfill 
Section 

EPS Geofoam 
Section 

Lower  
Bound 

Best  
Estimate 

Upper 
 Bound 

Lower  
Bound 

Best  
Estimate 

Upper 
 Bound 

Fill Ko 0.416 0.482 0.559 0.096 0.111 0.129 

UTBC Ko 0.274 0.318 0.369 0.274 0.318 0.369 

LDS Ko NA NA NA 0.431 0.500 0.580 

Fill Unit 
Weight 
(kN/m3) 

15.53 18.02 20.90 0.284 0.33 0.383 

UTBC Unit 
Weight 
(kN/m3) 

16.84 19.54 22.67 16.84 19.54 22.67 

LDS Unit 
Weight 
(kN/m3) 

NA NA NA 20.30 23.55 27.32 

Fill:Native 
Adhesion 

(kPa) 
40 46 53 10 12 14 

Fill:Native 
Friction (�) 

23 27 31 17 20 23 

UTBC 
Friction (�) 

39 43 47 39 43 47 

    

 

Table 25. Simple sliding block uplift calculation results 

Results 

Soil Backfill 
Section 

EPS Geofoam 
Section 

Lower 
Bound 

Best 
Estimate 

Upper 
Bound 

Test 
Result 

Lower 
Bound 

Best 
Estimate 

Upper 
Bound 

Test 
Result 

F (kN) 472 551 646 520 108 130 154 136 
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CHAPTER 9 
 

 NUMERICAL MODELING OF SIMPLE PIPELINE UPLIFT 
 

     Many different soil types, geometries and fault crossing scenarios are possible 

involving the future design of EPS Geofoam cover systems for steel pipelines crossing 

active normal faults. In order to develop a modeling procedure of pipelines in uplift that 

predicts both uplift resistance and displacements, it is necessary to begin the numerical 

analyses with simple geometries and case histories from the geotechnical literature. 

Numerical modeling is best done when a rational procedure is followed in which simple 

hand calculations and limit equilibrium techniques are first explored. Then, simple 

numerical models that match case histories and benchmark tests (Validation and 

Verification) are developed. Once the modeling procedure is developed and benchmarked 

against simple geometries, it can be extended to more complicated systems.  

     In geotechnical modeling, the simplest conditions are those that have sand as the geo-

material. For this reason, case histories from the literature using sand as the bedding 

material for pipes in uplift were chosen. Cheuk et al. (2008) conducted uplift testing of 

small pipes in sand. Their research included detailed characterization of the sand backfill 

used in their testing. Two different sands were used by Cheuk et al. (2008), a fine grained 

clean sand and a coarse grained clean sand. Tests were conducted using each sand in two 
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cases, dense compaction and loose compaction. This provided 4 case-histories with 

appropriate background information to conduct FLAC benchmarking for pipes in uplift.  

     Four FLAC models were developed using the geometry and soil conditions from 

Cheuk et al. 2008. Symmetry was assumed at the center line of the pipe in the FLAC 

model geometry. The soil properties appear in Table 26. Included in the sand 

characterization by Cheuk et al. (2008) was critical state friction angle and dilation. The 

only properties in Table 26 not provided by Cheuk et al. (2008) were Bulk and Shear 

Modulus. These properties were obtained from the soil property library in Duncan et al. 

(1980) from similar sands at similar relative density. The geometry for the FLAC models 

is shown in Figure 81. The pipe was modeled as 100 mm rigid pipe. Interface elements 

were placed between structural elements and the surrounding sand media as required by 

Itasca (2005) with interface properties developed using the procedure required for 

interface elements. The FLAC model was run to an initial static equilibrium before pipe 

uplift was initiated with the base of the model fixed in both directions, while the edges 

are fixed horizontally. The pipe was uplifted at constant rate in the FLAC model until 

numerical stability occurred. Figure 82 shows the deformed mesh at the end of uplift for 

one of the FLAC models. Normal nodal forces on the pipe were monitored continuously 

during pipe uplift using FISH code in FLAC. The sum of the uplift resisting forces was 

multiplied by two and plotted against pipe displacement for comparison to the results 

from Cheuk et al. (2008). Figure 83 shows the results of the FLAC modeling, while 

Figure 84 shows a comparison of the FLAC results and the test results from Cheuk et al. 

(2008). Figure 85 is after Cheuk et al. (2008). 
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Table 26. FLAC model properties for simple pipe uplift 

 

 

 

Figure 81. FLAC simple pipe uplift model geometry 
 
 

 

Sand ID γ φ’ cs φ’ pk ψ’ pk K G 

------------- % kN/m3 deg deg deg kPa kPa 

Coarse/Dense 92 17.2 32 52 25 458 211 

Coarse/Loose 36 15.6 32 42.5 13.1 375 173 

Fine/Dense 92 15.8 32 52 25 458 211 

Fine/Loose 30 14.1 32 39.9 9.9 375 173 
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     Figure 84 shows that the FLAC results compare well to the Cheuk et al. (2008) test 

results. The best fit between FLAC and test was the Course-Loose sand, while the Fine-

Dense sand had the worst fit. In general, the FLAC models overpredict the peak uplift 

force up to 13%. The shape of the force-displacement curve is generally consistent 

between FLAC and test data. A better postpeak shape could have been achieved in the 

FLAC modeling by use of a strain softening model.  

     It is concluded from the simple FLAC pipe uplift modeling that FLAC can predict 

both peak forces and the shape of the force-displacement curve found from simple pipe 

uplift tests.  This benchmarking exercise gives confidence that more complex pipe uplift 

systems can be modeled by FLAC. 
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CHAPTER 10 

 

 NUMERICAL MODELING OF UPLIFT TESTS 
 

     Many different soil types, geometries and fault crossing scenarios are possible that 

involve the future installation of EPS Geofoam cover systems for steel pipelines crossing 

faults or other types of permanent ground displacement (PGD) zones.  Because it is cost 

prohibitive to conduct full-scale, or even reduced-scale, tests to evaluate the force-

displacement characteristics for all cases, numerical modeling can play an important role 

in the evaluation and design of these systems.  Numerical modeling of various fault/PGD 

crossings is less expensive and allows the designer to parametrically examine ways of 

mitigating the potential damage to the pipeline by evaluating various Geofoam 

geometries and configurations. As part of this research program, a series of numerical 

models were developed to evaluate the experimental results of the uplift tests to see if 

such models could be used as an evaluation tool. 

    In addition, the force-displacement relationships obtained from the experiments 

previously discussed provide the basis for development of other techniques that may not 

entirely rely on numerical modeling. Thus, the force-displacement relationships, or 

nonlinear springs, developed herein are important to the evaluation and design of pipeline 

crossings undergoing vertical offset, regardless of the numerical scheme developed to 

perform the evaluation.  
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 Numerical Modeling Program 

     The numerical model chosen for this part of the research was FLAC version 5.01.432 

(Fast Lagrangian Analysis of Continua) from Itasca software of Minneapolis Minnesota. 

FLAC3D version 3.01 was also used.  FLAC2D is a two-dimensional explicit finite 

difference program and FLAC3D is the three-dimensional formulation of FLAC.  (See 

Chapter 6 for additional discussion about the advantages and disadvantages of the 

selected numerical technique.) FLAC3D contains most of the advantages of FLAC2D, 

while extending the structural element models to PLATE and SHELL type elements 

(FLAC2D is restricted to BEAM and CABLE type elements). FLAC3D has 

disadvantages in its grid generation complexity and longer run time required to model 3D 

features.  

     Once the force-displacement of the uplifting system is found from the FLAC 

modeling, further evaluation of the pipe may be done in a finite-element program (e.g., 

ANSYS or PIPLIN); or FLAC2D and/or FLAC3D can perform similar analysis using 

structural elements.  

 

 FLAC Modeling 

     Two FLAC models were developed for the full scale tests in this research. The 

experimental results were used to develop and calibrate the numerical models. The first 

FLAC model was developed for the case of the native soil backfill trench; the second 

FLAC model was developed for the case of the EPS Geofoam cover system. The models 

were developed in plane-strain mode using FLAC2D.  
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    The FLAC2D models were developed by uplifting the pipe at a constant rate (i.e., 

velocity) through the cover system and calculating the resultant stress.  This was similar 

to the manner in which the field experiments were conducted. The mechanical properties 

of the soils and materials used in the field test were input into the FLAC models with 

only minor adjustments. The triaxial testing of the soils at the site made it possible to 

determine the requisite Mohr-Coulomb properties of the various materials. (The Mohr-

Coulomb model is a basic model for geomaterials and was easy to implement.) Some 

behaviors were analyzed with more complex constitutive relations, such as the post-peak 

softening observed in the triaxial tests for the site soils and the tensile strength and large 

strain behavior of EPS Geofoam.  

 

Modeling Approach 

     The first step was to develop the modeling layout and geometry of the two field tests 

into the input file as closely as possible to the actual test conditions. For the Geofoam 

section, the mesh was created in two ways. The mesh was created once nearly identical to 

that of the soil backfill section with no internal interfaces. It was created once with 

internal interfaces between the Geofoam and soil.   Modeling results from the first case 

showed that interfaces were needed to accurately model the Geofoam cover system uplift. 

     In the second case, after the mesh was created and interfaces added, as appropriate, the 

mesh was divided up into “ groups.”  The “ groups”  are the elements (zones) in the mesh 

that will be assigned to a common material type.  As such, there was a “ group”  for the 

road base (UTBC) that was placed above the trench in the field experiments. The mesh 

and grouping of materials are shown in Figure 85 for the EPS Geofoam section. 
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     Once the zones in the finite element mesh were assigned to a “ group,”  the materials’  

properties added to the model. The materials are identified by a name, mass density, bulk 

and shear modulus.  FLAC does not use Young’ s Modulus or Poisson’ s ratio in its 

formulation, but these properties can be calculated from elastic theory from the bulk and 

shear modulus. If the Mohr-Coulomb model is invoked, then additional properties are 

required (i.e., cohesion, tension and the friction and dilation angles).  

     After the material properties were entered into FLAC, and the materials assigned to 

their “ group”  the boundary conditions were established for the model. The base of the 

model is fixed in both the X (horizontal) and Y (vertical) directions, respectively. The 

sides of the model were fixed in the X direction, so that the materials at the model’ s edge 

may compress (i.e., move vertically) under applied loads, but no horizontal movement 

was allowed.  This required that the model finite difference zone mesh be sufficiently 

large in the horizontal direction so that the deformations near the pipe were not 

influenced by the side boundaries.  

     Interface elements were required to properly model the interface conditions that 

develop between two dissimilar materials (Figure 86).  The interfaces’  nodes placed 

between the materials are shown by the white lines with crosses. The interfaces  run 

along the edge of the geofoam block, the whole of the reinforced concrete load 

distribution slab, the contact between Road base and the native soils and the potential slip 

lines through the Road base. These potential slip lines were determined from inspection 

of the field test, where the Road base sheared along the line of the load distribution slab 

that sits atop the EPS Geofoam block.                      
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     Before the model can be used to evaluate the uplift tests, the initial stress conditions 

must be calculated under gravity loads. The model was built up one material layer at a 

time and the model was stepped through time to static equilibrium. This allowed the 

material to settle under its own weight and establish stress equilibrium before another 

overlying layer was added. Once equilibrium has been reached, the displacements in the 

grid were initialized to zero, because these displacements were not important to modeling 

the uplift tests. Once the in-situ soil stresses were established, the trench was excavated in 

the FLAC model, and the system was again solved to static equilibrium and the resulting 

displacements from the excavation event were zeroed in the model.  

     Lastly, the pipe and the backfill soil were added to the model. The model was then 

stepped again with gravity load present to find the stress state in the system prior to 

uplift. Any displacements calculated during this step were also reset to zero. The pipe 

was added as a series of plane strain beam elements that lined a cavity created in the 

mesh by using a “ null”  material.  (A null material removes nodal points and mesh in the 

“ null”  zone.) The beams representing the pipe were attached to the grid mesh using 

interface elements. The interface elements used here were given the stiffness of the 

bedding sand and the adhesive and frictional strength properties assumed for steel-sand 

interface were assigned about 50 to 67% of the values for the adjacent soil. The beam 

elements were assigned the thickness of the pipe used in the uplift tests and given the 

modulus and yield stress of X42 steel pipe.  

    As an alternative, the pipe could also be modeled in a plane strain situation as a very 

rigid and unyielding material, so as not to introduce additional internal deformations 

during uplift. This approach was also deemed acceptable, because the model was being 
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used to estimate the nonlinear uplift characteristics of the cover system and the internal 

pipe deformation was deemed insignificant due to its stiffness and the shortness of the 

strand of pipe.  In this approach, any possible pipe deformation for a longer strand of pipe 

could be evaluated during the subsequent structural assessment of the pipe using the 

force-displacement spring found from the FLAC modeling. Figure 87 shows the soil 

backfill section with the pipe embedded in the model. The pipe is the circular opening in 

the mesh at the center of the model.  Once the pipe and backfill have been added to the 

model, initial stress conditions calculated and the displacements re-zeroed, the uplift 

protocol was coded into the FLAC model using FISH code. The FISH code was written 

such that every node of the pipe will uplift at the same rate. The FISH code was also 

programmed to track the nodal forces on the pipe so that the total force required to uplift 

the pipe could be calculated.  In doing so, it was important to include only those forces 

that participate in resisting uplift to correctly calculate the force-displacement relation. In 

addition, FISH code was written to obtain the stresses at various locations in the mesh at 

every time step in the model, or at prescribed intervals.  

     Damping must be used in the numerical model to improve numerical stability.  

Because FLAC uses the equation of motion to solve both static and dynamic problems, 

damping is required for numerical stability even for “ static”  problems. There are several 

types of damping available; combined mechanical and material damping is 

recommended. The amount of damping used depends on the run time the user desires, but 

the maximum recommended mechanical damping is 5%. Additional damping may 

introduce inaccuracies in the solution.  
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     The velocity chosen for uplift of the pipe requires special consideration in FLAC. 

FLAC is primarily a numerical model for static and dynamic loading of geomaterials and 

structures.  It can be run using the actual test uplift velocity if and only if the correct 

visco-elastic material constitutive model and properties have been assigned. However, 

obtaining these properties for geomaterials is a very expensive and time consuming 

process.  Instead, the visco-elastic model was not used; thus, the actual uplift velocity 

was not modeled.  Instead, the Mohr-Coulomb model was used with a “ virtual”  velocity.  

This “ virtual”  velocity is not related to the actual velocity, but is a numerical velocity that 

is sufficiently slow to allow the model to properly track the model state. The virtual 

velocity used FLAC for non-visco-elastic modeling is quite small (i.e., ranges from 1e-5 

to 1e-9 m/s).  This rate allowed the numerical code to solve in a stable manner the 

stresses, stains, forces and displacements occurring in the geomaterials and the structural 

elements. The user can force the model to run the appropriate number of timesteps, at the 

specified velocity, in order to reach the desired pipe displacement.  The optimal virtual 

velocity can be selected by monitoring the changes in the solution until a sufficiently 

slow rate has been found that no longer significantly affects the solution.  This can be 

monitored by observing the deformations and system response by plots and histories at 

specified locations in the model as uplift is proceeding. Once the model has finished 

running, the user can examine the output graphically or export the history plots to a text 

file (to be imported into EXCEL or other data analysis program) for inspection. 
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Soil Backfill Section Modeling Results 

     The soil backfill model (Figure 87) was analyzed with no sliding interfaces except 

along the edge of the pipe. This figure shows the model geometry prior to beginning 

uplift.  Figure 88 shows the FLAC deformed mesh at its final state. Note that the backfill 

(green material) and the road base (light blue material) have remained attached to the 

native clay and sandy layers. If an interface had been placed along the edge of the 

backfill, the fill material could have moved relatively along the sides of the trench.  

      The soil backfill section used the Mohr-Coulomb material model for the road base at 

the top of the model, but used the FLAC’ s strain softening model for the native soils and 

the clayey fill. The strain softening model is the same as the Mohr-Coulomb model in the 

elastic range, but differs in how it treats postyield plastic flow. The associated flow rule 

for the strain softening model uses strain softening or hardening friction, dilation, tension 

and cohesion as a function of plastic strain. For its implementation, the triaxial test results 

were used to find the strain softened postpeak properties (Appendix G). These are 

summarized in Tables 28 through 31.  

    Table 27 shows the inputs for the material properties in the FLAC model. In Tables 27 

through 31, the bulk modulus of the material is shown by K, the shear modulus by G, the 

internal friction angle of the material is shown by the Greek letter phi, while the dilation 

angle of the material is shown by the Greek letter psi. The apparent cohesion of a 

material is designated by c, and the tensile strength is given the symbol T. Appendix G 

contains a demonstration of the use of the strain softening model and its implementation 

in FLAC.  
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Table 27. Material properties for soil backfill section model 

 

Table 28. Strain softening model friction angle 

 

Table 29. Strain softening model dilation angle 

Material Density K G φ ψ c T 
--------- Kg/m3 kPa kPa deg deg kPa kPa 

UTBC 1990 53333 32000 43 3 2.5 0 

Bedding 1700 8333 3846 32 0 0.0 0.0 

Native 
Clay 1765 6666 2222 24 0 59.9 0.599 

Native 
Sand 1842 7083 3269 27 0 35.9 0.359 

Clayey 
Fill 1810 8333 1758 28 0 35.9 0.359 

Material 0% Plastic 
Strain 

9% Plastic 
Strain 

15% Plastic 
Strain 

30% Plastic 
Strain 

---------------- deg deg deg deg 

Clayey Fill 28 26 21 18 

Native Sand 28 26 21 18 

Native Clay 24 23 20 18 

Material 0% Plastic 
Strain 

9% Plastic 
Strain 

15% Plastic 
Strain 

30% Plastic 
Strain 

---------------- deg deg deg deg 

Clayey Fill 0 0 0 0 

Native Sand 0 0 0 0 

Native Clay 0 0 0 0 
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Table 30. Strain softening model cohesion 

 

Table 31. Strain softening model tension 

 

     Figure 89 shows the displacement vector pattern from the FLAC model at the end of 

uplift. In this figure, the majority of the vectors are vertical except along the failure plane, 

where they are approximately 60� from the horizontal. This failure angle was 

approximately predicted by Rankine passive earth pressure theory. The theoretical angle 

of failure in soils is 45� plus the friction angle divided by two. For the native soils and 

compacted clayey fill in this scenario, the friction angle was nearly 28�; thus, ����failure 

angle is�59��from Rankine theory. When the failure plane encounters the compacted  

Material 0% Plastic 
Strain 

9% Plastic 
Strain 

15% Plastic 
Strain 

30% Plastic 
Strain 

---------------- kPa kPa kPa kPa 

Clayey Fill 35.9 23.9 12.0 10 

Native Sand 35.9 35.9 15.9 10 

Native Clay 59.9 59.9 15.9 10 

Material 0% Plastic 
Strain 

9% Plastic 
Strain 

15% Plastic 
Strain 

30% Plastic 
Strain 

---------------- kPa kPa kPa kPa 

Clayey Fill 0.36 0.36 0.12 0.10 

Native Sand 0.36 0.36 0.16 0.10 

Native Clay 0.60 0.60 0.16 0.10 
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road base at the top of the model, the angle became nearly 70� because the friction angle 

of the road base is about 45�. 

     Figure 90 shows the vertical stress distribution in the soil backfill system at the end of 

uplift. The green zones in this figure are zones of vertical stress less than 100 kPa. The 

light blue shows areas where vertical stress became negative (i.e., the soil is slightly in 

tension). In addition, the red shading along the top of the pipe and in the zones 

immediately around the pipe indicated that the vertical stress in the bedding sand at the 

end of uplift is between 400 and 500 kPa.  

     It should be noted that the peak pressure found in the actual field uplift test was 

around 100 kPa located approximately 305 mm above the top of the pipe. The FLAC 

model predicted 240 kPa at the same location, or about 140% more vertical stress than 

was measured in the experiment of the soil backfill section. However, at the pressure cell 

placed 1220 mm above the top of the pipe, the field measurement was 10 kPa and the 

FLAC model predicted 10 kPa of vertical stress.  

     Lastly, the total force-displacement curve from the soil backfill uplift test is plotted in 

Figure 91 with the FLAC results. 

     It can be seen from Figure 91 that the FLAC modeling results overpredicted the peak 

uplift force of 563 kN compared to the test result of 520 kN. The FLAC modeling results 

also overpredicted the displacement associated with the peak force by about 30% (100 

mm of displacement predicted by FLAC compared to 70 mm displacement from the field 

experimental data).  
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     The peak secant stiffness of the soil backfill system from the FLAC was 1230 kN/m/m 

compared to 1625 kN/m/m obtained from the experimental data, a difference of 24%. 

Thus, the FLAC modeling appeared to reasonably predict the force displacement 

relationship for a pipe uplifting through a soil backfill system in regards to overall 

stiffness of the system. 

     The postpeak behavior in the FLAC model suggests a significant decrease in uplift 

resisting forces after the peak resistance and this was observed in the experimental data, 

although the decrease was even more significant in the experimental data. The postpeak 

softening of the curve was accomplished by using the strain softening soil model in 

FLAC.  The use of the strain softening model appears to be appropriate for modeling the 

postpeak behavior of the system in uplift, but it may need more calibration. 

 

EPS Geofoam Section Modeling Results 

     Figures 85 and 86 show the mesh and model setup for the Geofoam cross-sectional 

models developed without and with interface elements, respectively. The Geofoam model 

differs from the soil backfill model by the addition of the Geofoam block within the 

backfill and the reinforced concrete load distribution slab atop the Geofoam block. In the 

FLAC analysis, the reinforced concrete slab was treated as a linear-elastic material 

because the loads expected from pipeline uplift do not approach the yield strength of a 

152 -mm thick reinforced concrete slab.  The material properties for the model are shown 

in Table 32, while the interface properties are shown in Table 33. In Table 33, the 

interface properties were determined by guidance from the FLAC manual (Itasca, 2005). 

The values Ks and Kn are the shear and normal stiffness for the interface, respectively.  
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Table 32. Material properties for Geofoam section model 

 

Table 33. Interface properties for Geofoam section model 

Material Density K G φ ψ c T 

--------- Kg/m3 kPa kPa deg deg kPa kPa 

UTBC 1990 53333 32000 43 0 2.5 0.25 

Bedding 1800 8333 3846 32 0 0.0 0.0 

Native 
Clay 1765 6666 2222 24 0 59.9 0.60 

Native 
Sand 1842 7083 3269 27 0 35.9 0.36 

LDS 2000 436667 325700 NA NA NA NA 

EPS 
Geofoam 29 3401 3269 0 0 50 100 

Material 
1  

Material 
2 Ks Kn φ ψ c T 

--------- --------- kN/m kN/m deg deg kPa kPa 

EPS 
Geofoam 

Native 
Clay 1000 11420 24 0 9 0 

EPS 
Geofoam 

Native 
Sand 1000 11420 24 0 9 0 

EPS 
Geofoam LDS 87333 87333 6 0 0 0 

LDS Native 
Sand 87333 87333 13 0 1 0 

Bedding EPS 
Geofoam 1000 11420 30 0 0 0 

Bedding Pipe 1350 13500 24 0 0 0 
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The stiffness of an interface between two materials is calculated from a combination of 

bulk and shear modulus divided by the zone widths along the interface. The shear and 

bulk modulus of the softer material along the interface is suggested, but not required 

(Itasca, 2005). 

    The elastic moduli for the EPS Geofoam were set to degrade as a function of strain in 

the complex hyperbolic model (Chapters 3 and 4). The EPS moduli used were therefore 

nonlinear and constantly softening as a function of compressional strain. Also, it was 

noted that these nonlinear moduli had little effect on the results because the failure was 

dominated by shearing at the Geofoam soil interface and the assigned interface properties 

controlled the uplift behavior in the FLAC model. 

 

EPS Geofoam Section Modeling without Interfaces 

     The EPS Geofoam section was modeled twice:  with and without interface elements. 

The result for the model without interfaces is presented first (Figure 92). The reason for 

not including interfaces in the first case was to evaluate their importance in the 

subsequent FLAC models. It can be seen in Figure 92 that this no-interface model 

predicts significant deformation of the EPS Geofoam block. Because this phenomenon 

was not observed in the full-scale field uplift test of the Geofoam cover system, this 

model does not produced reasonable results.  Approximately 0.28 m of uplift occurred 

before the modeling was terminated.  
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      Figure 93 presents the vertical displacement contours for the Geofoam model with no 

interfaces. This figure suggests that the angle of the displacement contours prorogated at 

roughly 60� from the horizontal in the zone outside of the Geofoam block.  

It is important to note that most of the vectors in this model were concentrated in the 

bottom half of the EPS Geofoam block. This is similar to the observations of the 

Geofoam behavior in the Geofoam-pipe interaction and lateral Geofoam pipeline 

experiments. This behavior, however, was not observed in the uplift test of the Geofoam 

system. The compression in the Geofoam block suggested from the FLAC modeling was 

a result of the relatively large shear resistance that developed on the sides of the Geofoam 

block because no interface was present.  This resistance restrained the block from uplift, 

hence producing compression in the block as the pipe attempts to uplift.   

     It is possible that if the full-scale uplift test been conducted by vigorously compacting 

soil around the EPS Geofoam block rather than digging a trench and placing the block in 

the open trench, this type of behavior may have resulted. However, because the trench 

was excavated in a somewhat cohesive soil, a stable trench wall was achieved and less 

side shear resistance developed. 

      The above observation is important for future applications. A system that allows the 

block to move upward rather freely will produce a less stiff system, giving the pipeline 

freer movement towards the surface as it uplifts. The reduction in frictional force between 

the Geofoam block and the trench walls can be achieved in several ways (e.g., 

geomembrane placed between the trench wall and the EPS).  Consideration of this should 

be given during construction because of its highly beneficial effects. 
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     Figure 94 shows the vertical stresses in the model at the end of uplift for the case 

where no interfaces have been added to the model. The peak stress observed in the uplift 

of the EPS model with no interfaces is 600 kPa. The highest stress observed in the actual 

uplift test was 168 kPa. This again shows that the FLAC model predicted significant 

higher local stresses around the pipe than were observed from the test results. However, 

the stresses in the top part of the model were about 25 kPa, the same as was observed in 

the actual uplift test. 

     The force-displacement results for the Geofoam model without interfaces are shown in 

Figure 95 in combination with the actual test data for the Geofoam cover system. This 

figure shows that the FLAC model without interfaces exceeded the experimental data by 

about 100 kN.  In summary, these modeling results indicate that interfaces should be used 

when modeling Geofoam block in a soil mass that is responding to an uplifting pipeline.  

 

EPS Geofoam Model  

     Figure 96 shows the deformed mesh at the end of uplift for the Geofoam section 

model that utilized interfaces. The peak uplift for this model was 318 mm before a bad 

geometry error was encountered in the FLAC model.  

     The deformation pattern in Figure 96 at the end of uplift matched the observed 

deformation pattern from the full-scale uplift tests in the field. This model suggested that 

the Geofoam slightly compresses at the base, when uplifted out of the trench as an elastic 

unit while the load distribution slab supported the overlying compacted road base. In this 

model, the interface properties between the Geofoam and the surrounding soil are given  
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in Table 33. The values in Table 33 were obtained from interface testing in a direct shear 

device using the EPS Geofoam and the native soils obtained from the site.  Figure 97 

shows the state of the Geofoam model at the end of uplift. This plot shows that the 

Geofoam had reached the yield point in compression and that the compacted road base 

above the load distribution slab had failed in tension. The load distribution slab protected 

the Geofoam to a certain degree in uplift and forced the failure plane vertically through 

the compacted road base. 

     Figure 98 shows the displacement vectors for the Geofoam model with interfaces. 

Figure 98 and Figure 99 show the Geofoam block uplifting as a single unit with some 

minor compression of the Geofoam immediately near the pipe and the bedding sand. The 

compression, however, is limited to the first 150 mm of the Geofoam block. This shows 

the strain gradient of Geofoam in compression that was observed in both the pipe-

interaction test and  the full-scale lateral pipe movement tests done as part of this 

research. 

    Figure 99 shows the vertical stress contours at the end of uplift for the Geofoam 

system with interface elements added. The peak vertical stress was found near the top of 

the pipe in this model and is about 300 kPa.  This was approximately 40% larger than the 

field measured value. The vertical pressure at 152 mm above the pipe (i.e., the location of 

the lowest pressure sensor in the uplift experiment) was 200 kPa, which is only 16% 

higher than the measured value.  

     The final force-displacement results for the Geofoam section are shown in Figures 100 

and 101. Figure 100 shows the results of the EPS Geofoam model with interfaces 

included. The match of the peak force and the shape of the curve is considered to be very  
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good throughout most of the displacement range. The initial displacement range did not 

match well, as the field test data showed no displacement until the mass of the system 

above the pipe was mobilized as well as some of the frictional resistance. The FLAC 

model shows more immediate displacement. This initial behavior is governed by the 

bedding sand around the pipe. In the field tests, the sand was observed to flow freely 

around the pipe before much uplift had occurred. In FLAC, the sand did not flow around 

the pipe. At a displacement of 270 to 370 mm, the FLAC model had some numerical 

instability that produced the “ bump”  in the FLAC curve compared to the field test data.      

     Figure 101 shows the field test data and the results of both the EPS FLAC models 

with and without interfaces. The FLAC model with interfaces predicted the peak force 

within 5% of the field results. The experimental peak occurred at nearly 180 mm of pipe 

uplift, while the FLAC model with interfaces showed the peak was achieved at 200 mm 

of vertical displacement. 

     Thus, it is concluded that the FLAC model with interfaces reasonably estimates the 

peak uplift resistance and the corresponding displacement required to reach that peak. It  

is also concluded that if proper interface properties are determined via laboratory testing, 

FLAC can reasonably model the uplift force-displacement behavior of a pipe in uplift for 

plane-strain conditions.  

     Figure 101 presents the recommended curves for evaluating the force-displacement 

relationship of an EPS Geofoam cover system for site, soil and construction details 

similar to those used in the field experiments. In application of Figure 101, it is important 

to remember these FLAC modeling results represent two distinct cases, one where the 

block is allowed to slide along trench side walls, and one where the block is fully coupled 
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with the trench side walls.  In reality, the EPS block cannot be fully coupled with the 

trench sidewall, so that case represents the upper bound of behavior.  The actual sliding 

resistance that develops at this interface is a function of the interface friction angle and 

the normal stress that develops between the EPS and the adjacent backfill.  The latter is 

strongly influenced by the construction and degree of compaction used as the soil placed 

around the EPS block. 

 

FLAC3D Modeling 

     A series of FLAC3D models were developed in conjunction with the FLAC2D models 

for the two field test sections (i.e., soil backfill and EPS Geofoam cover system). The 

purpose of these modeling exercises was to explore more closely the soil-structure and 

soil-Geofoam structure interactions in uplift. The FLAC2D models previously discussed 

used simple beam elements for the pipe. The FLAC3D analysis incorporated more 

complex plate and shell type elements to model the beam. The plate and shell elements 

have more degrees of freedom than simple beam elements. Additionally, the FLAC3D 

models allow the pipe to be “ picked up”  at two locations as occurred in the field tests. 

Rather than assuming a plane-strain condition, the actual uplift conditions can be more 

faithfully modeled, including end conditions, in FLAC3D. 

     In most respects, FLAC3D’ s formulation is similar to that of FLAC2D except that in 

the model setup, the user defines the geometry, structural elements, material properties, 

boundary conditions, etc., in terms of their location in real coordinate space rather than in 

nodal space as is done in FLAC2D analysis. The same constitutive material models are 

available in FLAC3D. In addition, the same computational procedure is implemented in 
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both codes and large strain mode calculations are handled in both models. FISH code was 

once again used in FLAC3D to control the model and request detailed outputs from the 

analyses during and after computation.  

 

Modeling Approach 

     The same modeling approach used in FLAC2D was used as in FLAC3D. The model 

geometry was created as closely as possible to the actual field test conditions. The 

materials were added to the model and assigned to “ groups”  that divided up the mesh into 

regions. The boundary conditions were established with the additional restraint that 

displacement was restricted in the longitudinal direction along the base, sides and ends of 

the model. The soil in the area of the pipe was assigned as a “ null”  material and the pipe 

geometry was added as a series of SHELL elements with the same material properties as 

the actual pipe. The SHELL elements were not attached to the mesh with interface 

elements similar to the FLAC2D analysis, because the structural model in FLAC3D 

already contains such interfaces. These interfaces allow slippage and separation of the 

zones at the interface. They also allow for frictional interaction as specified by the 

friction angle at the contact point.  

     A series of runs were conducted to initialize the model to the in-situ and initial stress 

conditions. After the initialization of the model, the pipe was uplifted, at the locations in 

used the field test, at constant velocity until a numerically unstable state was reached (i.e., 

bad geometry error was encountered). Uplift was then halted and the results were 

extracted from the model.  
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FLAC3D Modeling Geometry 

     Figure 102 shows the three-dimensional finite-difference grid with the pipe positioned 

within. (This perspective was chosen for most of the subsequent plots because it shows 

the 3-dimensional shape of the grid as well as the results in a simple manner.) Note that 

the axes shown in Figure 102 show that the X-direction was transverse, the Y-direction 

was longitudinal and the Z-direction was vertical. The grid was centered in the X and Y 

directions, and the base of the model was set to zero in vertical (i.e., Z-direction). The 

base of the grid is the same length as the length of the pipe used in the field uplift tests. 

The end of the pipe was flush with both ends of the model. This was done because in the 

field tests, the ends of the pipe were not covered in the trench by the soil backfill or EPS 

cover system. 

     Figure 103 is similar to Figure 102 with the addition of the shading representing the 

different materials used in the soil backfill model. The structural elements for the pipe are 

not shown in Figure 103, but the pipe has been placed in the slot in the bedding sand.  

 

FLAC3D Modeling of Soil Backfill Section 

     The various materials in the soil backfill model are also shown in a different manner 

on the mesh in Figure 104. This figure also shows shading representing the cohesive 

strength of the different materials. (The sidebar in Figure 104 indicates the range in 

cohesive strengths for a given color.)  The blue shading represents zero cohesion which is 

sand. The native sand was been given some cohesive strength despite being an overall 

nonplastic soil.  The amount of cohesion assigned was based on the results of the 

unsaturated triaxial tests performed (Tables 24 through 28). 
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     Figure 105 shows the deformed mesh and pipe location at the end of uplift for the soil 

backfill section. Figure 106 shows the displacement contours on the deformed mesh. The 

pipe location at the end of uplift is shown in reds.  Figures 105 and 106 show slightly 

more compression and distortion of the clay backfill than was obtained in the FLAC2D 

model (Figure 92). In addition, a less pronounced surface expression of the uplift failure 

planes was obtained in the FLAC3D results. Instead, the FLAC3D modeling showed that 

the uplift is more concentrated along the trench.  

     Figure 107 shows the vertical stress distribution in the soil backfill from the FLAC3D 

model at the end of uplift. The red shading in this figure shows the zones of the grid that 

were in tension. The blue shading indicates that the highest vertical stresses were 

concentrated within 150 mm of the pipe. The green shading indicates that most of the 

higher vertical stresses were concentrated within about 457 mm of the pipe during this 

stage of uplift. The FLAC3D modeling results overpredicted the vertical stresses in the 

zone located 915 mm above the pipe by about an order of magnitude compared to the 

FLAC2D model. This may be a 3D stress concentration effect not calculated by the plane 

strain formulation in FLAC.   

     It should be noted that the displacement of the pipe at the end of uplift, as shown in 

Figure 106, was nearly 250 mm. Uplift of the pipe during the modeling was halted by 

FLAC3D after 190 mm of uplift.   Figure 108 shows the horizontal stress distribution of 

the soil backfill model at the end of uplift. The highest horizontal stress was concentrated 

around the top of the pipe and was in compression. The red shading in this figure 

indicates that the soil located directly beneath the compacted road base was in tension at 

the end of uplift.   
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     In addition, the model predicts a horizontal stress increase in the surficial soil near the 

ground surface starting from the edge of the trench and extending to the edge of the 

model. This increase in horizontal stress appears reasonable and was a result of the 

bulging of the clayey fill in the trench as it is pushed upward and outward by the uplifting 

pipe.  

     The normal stresses developed in the SHELL elements that compose the pipe are also 

shown in Figure 109 at the end of uplift. The shading of the pipe’ s SHELL elements 

indicates the magnitude of the normal stress at this time. The highest normal stress 

calculated was approximately 1 MPa and occurred along a thin strip that runs along both 

sides of the pipe near the crown. This zone of highest stress was located roughly 1/8 of a 

pipe radius from the crown of the pipe (45 degrees from vertical). The normal stress 

found directly above the crown of the pipe was significantly lower (about 600 MPa) 

which represents a 40% reduction from the maximum normal stress.  

     Figure 110 illustrates the vertical stress on the pipe at the end of uplift. This plot 

confirms the conclusions from Figure 109 in that the stresses on the pipe were 

concentrated at 45 degrees from vertical on the pipe, but not at its top. This vertical stress 

distribution on the pipe (Figure 110) shows that very high, localized vertical stresses 

occurred along the lines of highest normal stress.  Figure 111 also shows that the bottom 

of the pipe had zero to slightly negative vertical stress acting on it in the zone where there 

was no contact with the underlying soil.  

     The shear coupling stress in the pipe at the end of uplift for the soil backfill model is 

shown in Figure 111. The highest shear coupling stress was also found where the normal 

and vertical stress were at their maxima. Figure 111 indicates the local shear stresses  
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 were quite high at this location and were nearly zero at other locations in the pipe. This 

suggests that the shearing of the soil was also occurring at this location (i.e., an angle of 

45� from the center of the pipe).  

    In short, the modeling of the pipe showed that the highest vertical, normal and shear 

stresses were found in the same longitudinal zones. The highest horizontal stress on the 

pipe (not shown in this report), however, acted at the sides of the pipe at 90� from 

vertical. Figure 112 shows the moments induced on the pipe at the end of uplift. The 

magnitude of the induced moments are so small it is concluded that the uplift of the pipe 

at two locations had little influence on the pipe (i.e., the pipe behaved rigidly).  This 

confirms the plane-strain assumptions used in the FLAC2D modeling. 

 

FLAC3D EPS Geofoam Model  

     The EPS Geofoam section was modeled in FLAC3D. The FLAC3D Geofoam section 

model geometry with interfaces is shown in Figure 113. The interface locations in the 

EPS Geofoam section with interfaces are shown in Figure 114. Interfaces were placed in 

the same locations in the 3D model as the 2D model. Interfaces properties were the same 

in the 3D model as the 2D model (Table 30). The FLAC3D Geofoam model with 

interfaces was initialized in the same manner as was the FLAC3D soil backfill model. 

The same uplift code was used in the model with interfaces as the soil backfill section. 

The only difference in the two models was that the materials for which interfaces are to 

be added were “ separated”  from each other in the code, and an interface “ wrapped”  

around them. The interfaces, as shown in Figure 114, were “ wrapped”  around the 

bedding sand, the EPS Geofoam block, the load distribution slab and the UTBC at the top 
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of the trench backfill. The pipe was uplifted into the cover system with interface elements 

until numerical instability was reached at 152 mm.  

     In order to see the performance of the EPS Geofoam FLAC3D model with interfaces, 

the interfaces themselves were checked first. The normal stresses on the interfaces should 

reflect a reasonable stress condition. The contact between materials sliding past one 

another should also match the deformed geometry. The normal stresses on the interfaces 

at the end of uplift are plotted in Figure 115, while the contact between materials at the 

end of uplift is plotted in Figure 116.  

     The normal stresses on the interfaces in Figure 115 reflect a bulging of the Geofoam 

block. The shading in Figure 116 shows areas of normal stress between 40 and 140 kPa. 

The areas of higher normal stress were at the bottom sides of the Geofoam block, where 

the block was attempting to bulge (as a negative Poisson’ s ratio has not been applied for 

numerical stability). The bulging of the Geofoam block had increased the normal stress 

on the interface, and also increased the resisting shear force in uplift along that interface.  

     The shear resistance of the interfaces was fully mobilized by the end of uplift. At an 

uplift of 152 mm, the interfaces should be mobilized, and the contact should be lost 

between some elements near the top of the model. Figure 116 shows red and brown 

symbols for interface elements that had, or were in the process of, slipping past the 

material opposite them. Every interface element had been mobilized in the model at the 

end of uplift, and many elements towards the top of the model (road base and load 

distribution slab interfaces) had even lost complete contact with the adjacent materials. 

The final deformed geometry is shown in Figure 117. This deformed geometry closely 

matches the field uplift test geometry at the end of uplift.  
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     Vertical stress contours at the end of uplift for the model and the vertical stresses on 

the pipe itself for the FLAC3D Geofoam model without interfaces are in Figures 118 and 

119, respectively. The vertical stress contours in the grid (Figure 118) at the end of uplift 

show that the highest vertical stresses were in the Geofoam block. The vertical stresses 

on the pipe (Figure 119) show that the highest stresses on the pipe were at 45 degrees 

from vertical on the pipe.  

     The highest vertical stress in Figure 119 on the pipe was 485 kPa, while the highest 

vertical stress in Figure 118 for the grid was 113 kPa. The vertical stress at 300 mm 

above the pipe in the FLAC3D Geofoam model was 80 kPa. The field uplift test of the 

Geofoam section had a peak vertical stress of 80 kPa located 300 mm above the pipe.  

     The total resistance on the pipe during uplift is a function of normal and shear 

resistance. The shear resistance is plotted in Figures 120. The uniform distribution along 

the pipe, even at the two locations of the pick-up points, supports the assumption that the 

pipe remained rigid during the field test. 

 

Conclusions 

     Numerical models using FLAC2D and FLAC3D were conducted to show that the 

uplift tests results can be reasonably modeled and estimated. The primary advantage of 

FLAC for modeling the uplift tests is its large-strain capabilities. The FLAC models were 

able to estimate reasonably the field test results for the EPS Geofoam section. The FLAC 

models were also able to estimate the field test results for the soil backfill section, though 

with less accuracy than the EPS Geofoam section. The modeling procedure of this 

chapter, together with the modeling and analyses of previous chapters shows that FLAC 
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can be used to develop uplift force-displacement relationships for pipeline design at fault 

or permanent ground offsets. This means that engineers have a tool that can be used to 

develop springs constants for sand and clay using the modeling techniques presented 

herein. The FLAC modeling in conjunction with the experimental data show that EPS 

Geofoam cover systems can be used to reduce significantly the soil-pipe interaction 

forces for large vertical displacements of the pipe system. 
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CHAPTER 11 
 

 ASPHALT PAVEMENT EFFECTS ON UPLIFT 
 

For the uplift of steel gas transmission pipelines due to fault offset, one important 

consideration is the behavior and rupture strength of the overlying asphalt pavement that 

commonly cover buried pipelines in urban settings. Asphalt Concrete (AC) pavements 

are commonly used for roadways in the western United States. During uplift, when an 

AC pavement is present, the pipeline must lift up against the relatively stiff and strong 

pavement layer at the ground surface. The strength and high stiffness of the pavement 

layer potentially provides significant resistance to uplift, so its behavior and material 

properties are important to the design of EPS Geofoam cover systems in urban settings.  

Unfortunately, the shear strength and stiffness of an in-place asphalt pavement are 

difficult to define. The properties of the asphalt pavement material are dependent on a 

number of things (e.g., aggregate type, aggregate gradation, binder grade, binder content, 

temperature, age, rate of rupture, pavement thickness, pre-existing cracks in the 

pavement, etc.).  Aged asphalt pavements with a great deal of cracking generally have 

less strength against uplift than newly placed pavements.   

Most of the research done on the strength and deformation properties of asphalt 

concrete pavements has been directed at traffic loading, which is in the small strain 

regime.  Traffic loads produce much smaller stresses and deformations than a large 

diameter pipeline undergoing uplift from fault offset through a pavement section. 
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Pavement engineers typically investigate asphalt and asphalt pavements for the range of 

stresses and deformations from a standard 80 kN truck load. These engineers have little 

interest in the extreme limit strength of asphalt.  

For this report, a two-stage investigation was done to try to quantify the expected 

strength and stiffness of asphalt pavements undergoing uplift to a failure state. The first 

stage of the investigation was a survey of available information from the pavement 

engineering literature. The second state of the investigation was a set of beam tests on 

typical hot-mix asphalt as used in Utah.  No discussion is given herein regarding the 

properties of cracked pavements or highly aged pavements.  Instead, the study focuses on 

the properties of a new pavement, where environmental factors have not deteriorated the 

pavement. Such an approach is conservative in the engineering sense, because the 

evaluation of material properties appropriate for a new pavement will lead to the most 

extreme loading condition. However, for design, it is recommend that further site-specific 

and pavement specific studies/test be conducted if the pavement properties vary 

significantly from those used herein. A series of FLAC analyses were conducted from the 

baseline case in the previous chapter with the addition of a HMA pavement section at the 

ground surface. The results of these FLAC analyses demonstrate the effects of a 

pavement section on pipeline uplift.  

 

Applicable Asphalt Strength and Rupture Studies   
 

     Goetz and Chen (1950) were perhaps the first to publish experimental data on the 

strength of hot mix asphalt (HMA). They conducted a series of triaxial compression tests 

on a range of mixes and binders, but did so with more bitumen and voids than commonly 
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are used today. Goetz and Chen reported friction angles between 21� and 57� and a ratio 

of tensile strength to compressive strength (Ro) ranging from 0.1 to 0.5, with a mean of 

0.25. Thus, this study suggests that the tensile strength of HMA is roughly one quarter 

that of its compressive strength. 

     Hills and Heukelom (1969) continued the early work by Goetz and Chen. They 

conducted additional triaxial compression tests and found that for less rich mixes, Ro 

ranges from 0.15 to 0.30, with a mean of about 0.225.  This additional study supports the 

generalization that the tensile strength of HMA is roughly 25% of its compressive 

strength. Hills and Heukelom (1969) further found that the ratio of the modulus in tension 

to that in compression for HMA ranges from 0.2 to 0.9, suggesting that the modulus of 

HMA in tension can be as little as 20% of the compressional value. They also found that 

for a given HMA mix, the ratio of modulus decreases with increasing temperature. They 

also found that the stiffness of the binder has a great effect on the strength and stiffness of 

the HMA. In addition, Ro increases with increasing binder stiffness and that the ratio of 

tensile to compressive stiffness dramatically increases with increasing binder stiffness. 

This indicates that as the stiffness of the binder increases, correspondingly, the tensile 

stiffness increases. Lastly, Hills and Heukelom (1969) relate the friction angle of HMA to 

compressive strength with Equation 24. In Equation 24, φ is the friction angle of the 

HMA. 

  

0

0

1
1

sin
R
R

+
−=φ                                                               (24) 
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     Li et al. (2008) found that the temperature history affects the tensile strength of HMA. 

They made two sets of HMA samples, identical in every way. The first set was aged for 

several days at room temperature (25 �C). The second set was conditioned in a 60 �C 

water bath for 24 hours after having spent two days in a -18� chamber. Li et al. (2008) 

found that the tensile strength of the HMA averaged 115kPa for the normal samples and 

97kPa for the conditioned samples. This was a decrease in strength of 15%. This research 

indicates that thermal cycles affect the strength of HMA, though not significantly over a 

short period of time. The authors suggest that the affect of thermal cycling and aging 

would become more pronounced with more elapsed time.  

      El-Aziz Zahw (1999) conducted a study on the tensile strength of HMA and the 

influence of test temperature. He found that, depending on mix and binder, the strength of 

HMA at room temperature ranged from 1.6 to 3 MPa. These strength results were higher 

at room temperature than other researchers had reported by approximately an order of 

magnitude. El-Aziz Zahw (1999) found that the strength of the different mixes of HMA 

decreased to a range of 1 to 2 MPa at 45�C. This indicates that the strength of HMA can 

decreases from 230 psi to 145 psi on a hot day, a reduction of 37%. The strengths of the 

different mixes further decreased to a range of 0.6 to 0.9 MPa at 60�C. This is a decrease 

of 62% to 70% from the room temperature strength. El-Aziz Zahw (1999) also found that 

increasing the asphaltene content of the binder and decreasing the resin content of the 

binder increased the strength of HMA.  

     El-Naby et al. (2002) investigated the affects of different aggregate type and binder 

content on the strength of HMA. A series of compression and indirect tensile tests were 

done on 4 different mixes with three binder contents and three aggregate types. Tests 
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were done at standard temperature and pressure and at an unknown rate (not specified by 

authors).  El-Naby et al. (2002) concluded that the denser the HMA, the higher the 

compressive and tensile strength of the HMA. (This is a logical conclusion since fewer 

voids in the compacted material means more aggregate and binder interacting.) The 

interaction of binder and aggregate, along with binder strength, leads to the strength of 

the mix. Figure 121 shows the results of El-Naby et al. (2002) research on the effects of 

compacted specimen unit weight and strength of HMA. This figure shows that the 

compressive and tensile strengths of HMA increase slightly with increasing compaction. 

El-Naby et al. (2002) also found that by increasing the asphalt binder content of the mix 

from 3% to 7%, the strength increased by 20% to 30% depending on aggregate type and 

gradation. Figure 122 shows the results of their research into binder content and strength 

of HMA at room temperature. Figure 122 also shows the trend in the data towards 

increasing strength with increasing binder content. These authors also found that 

aggregate type made a profound effect on the strength of HMA. El-Naby et al. (2002) 

concluded that aggregates with rougher surfaces make stronger HMA, which was also an 

obvious conclusion because of the higher friction angle and interface friction associated 

with rougher aggregate surfaces.  

     Wang et al. (2008) investigated the effects of gradation on HMA strength. They 

conducted a series of direct shear tests and indirect tensile tests to discover the effects of 

4 different gradations on HMA strength. This evaluation used 5 gradations, including a 

Superpave gradation from the United States. The major differences in the gradations were 

their maximum particle size and fines content. In addition, one series of tests wasalso 

done on a single gradation but varying the binder content from 3.5% to 5.5%. 
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     The series of tests where Wang et al. (2008) varied the asphalt binder content showed 

that the friction angle of the material decreased with increasing binder content. This 

stands in contrast to the findings of El-Naby (2002), who found increasing strength with 

increasing binder content. The results of the Wang et al. (2008) study indicate that 

although the tensile strength and unconfined compressive strengths of HMA may 

increase with increasing binder content, the friction angle and cohesive strength in simple 

shear decrease with increasing binder content. This finding suggests that aggregate 

roughness is a large portion of the shearing resistance of HMA rather than asphalt binder 

in direct shear. 

     Regarding the effects of gradation, Wang et al. (2008) found that gradations with a 

larger amount of larger aggregate had higher compressive strength. Likewise, they found 

that decreasing the fines content of HMA increased the friction angle. Wang et al. (2008) 

found that the average shear strength of HMA regardless of gradation at 60�� ��	
���
 is 

393 kPa, the average compressive strength is 381 kPa, the average tensile strength of 

HMA is 67 kPa and the average friction angle is 46.6���These values are applicable to a 

hot summer’ s day. For lower temperatures (i.e., 12�� 
 Wang et al. (2008) determined that 

the average shear strength of HMA regardless of gradation is 5 MPa, the average 

compressive strength is 780 kPa, the average tensile strength of HMA is 96.5 kPa and the 

average friction angle is 48���These values are applicable to a cool day. 

     More recently, Pellinen and Xiao (2005) developed a set of Mohr-Coloumb failure 

criteria for HMA based on several factors including loading rate. They used 4 different 

mixes and 3 different binders in their investigation. They used indirect tensile tests and 

triaxial compression tests to determine tensile strength, cohesion and friction angle at 
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temperatures around 45 �C. They found that loading rate was the most critical variable in 

their testing when keeping temperature constant. This was confirmed by several sources 

that remind engineers that for asphalt and HMA, time and temperature can be 

superimposed. This means that for HMA, loading rate and temperature give analogous 

results. Slower rates correspond to warmer temperatures and visa versa. A fast rate on a 

cold sample will give the highest strength and stiffness, while a slow rate on a hot 

specimen yields the smallest strength and stiffness. For a loading rate of 50 mm/min, 

Pellinen and Xiao (2005) found that the average tensile strength for the 12 mixes and 

binders was 81 kPa (12 psi), the cohesion intercept for failure 200 kPa and a friction 

angle of 40.4�. At slower rate of 7.5mm/min, Pellinen and Xiao (2005) found that the 

average cohesion intercept for failure 126 kPa, and a friction angle of 43.3�. This means 

that at a slower rate, the cohesion intercept decreases and the friction angle of HMA 

increases. 

     In summary, the literature survey found that the tensile strength of HMA at room 

temperature ranges from 62 to 96 kPa, increases at low temperatures and decreases at 

high temperatures. The cohesion intercept of HMA at room temperature ranges from 124 

to 207 kPa, increases at low temperatures and decreases at high temperatures. Finally, the 

friction angle of HMA at room temperature ranges between 42� and 48� and the friction 

angle decreases at low temperatures and increases at higher temperatures. The literature 

also indicates that the modulus of HMA increases dramatically for colder temperatures 

and more rapid loading. Denser HMA, larger aggregate, rough aggregate and less resin 

content in the asphalt binder increase the strength and friction angle of HMA. Increasing 
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amounts of asphalt binder increase the compressive and tensile strengths of HMA and 

decrease the shear strength. 

 

Asphalt Rupture Tests 

     A series of small 3-point load beam tests were conducted on HMA to determine the 

tensile strength and stiffness of a typical HMA local to the Salt Lake City, Utah area. The 

HMA was taken from an asphalt placement in Salt Lake City out of the hopper of the 

asphalt spreader on a project site. The sampling temperature of the asphalt was 130 �C. 

The material was transported to the lab, reheated and a series of index tests on the sample 

were performed. The HMA sample was then reheated and compacted into three slabs. 

The slabs were compacted as slabs by a SLAB-TRAK kneading compactor at the 

University of Utah. The three slabs were cut with a diamond saw into nine small beams 

for three-point load testing after cooling for 48 hours.  

     The asphalt binder content of the sample was 6.7%. The Marshall value was 2.355, 

theoretical specific gravity was 2.433 and the Marshal unit weight of the HMA was 

146.5pcf. The stability of the Marshall pucks was 17 kN. There were 3.2% voids in the 

compacted sample of which 82.1% were filled, with a VMA of 13.8%. Figure 123 shows 

the gradation of the aggregate in the sample. The aggregate was angular crushed rock. 

Compaction Temperature of the slabs was 130�C. The actual compacted unit weight of 

the slabs was 22.26 kN/m3. Each beam was 320 mm long, 41.4 mm deep and 88.7 mm 

wide.  

     After cutting, the slabs were aged for three days at room temperature. Three of the 

beams were then aged for four days at room temperature. Three were aged for four days 
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in a 125 �� oven. The last three beams were aged for four days at -10 �F. The individual 

beams were left in their temperature environment until a few seconds before testing. 

Great care was used to test within one minute of removing a beam from the oven or 

freezer to ensure that the temperature of the beam would change as little as possible 

before testing.  

     The three-point beam load test is based on simple static principles. The beam is 

supported at each end by a roller which allows rotation of the ends, but no vertical 

movement. At the center point of the beam, the load is applied with another roller. The 

beam is thus loaded at the center with reaction on the ends. The loading device is applied 

rapidly (635 mm/min) so as to simulate the rate at which fault-induced pipeline uplift 

occurs. The force and displacement of the loading device is monitored and recorded 

continuously by the loading device. The loading device used was a GEOCOMP brand 

LOADTRACK load frame. The data acquisition of force and displacement are contained 

in the LOADTRACK. The support rollers sit on a small frame that sits on the load platen 

of the LOADTRACK.  Figures 124 and 125 show the load frame and support rollers, 

along with the specimen.   

     The test is started as the loading roller is positioned on top of the beam with minimal 

contact force. The platen then lifts up, pushing the beam against the load roller. The force 

is recorded by the load cell attached to the load roller. The platen lifts until the beam has 

completely cracked. The platen is lowered, data removed retrieved and the specimen is 

removed.  Figure 126 shows the asphalt beam after testing is complete.  

 

278



 

 

Hot Mix Asphalt Gradation

0

10

20

30

40

50

60

70

80

90

100

0.010.1110100
Sieve Size (mm)

P
er

ce
nt

 P
as

si
ng

 

Figure 123. Gradation of HMA used in beam tests 
 
 

 

Figure 124. Asphalt beam on rollers 
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Figure 125. LOADTRACK and asphalt beam 
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Figure 126. Cracked asphalt beam after 3-Point beam test 
 

     The tensile strength of the beam is calculated using statics principles. The calculation 

begins with the maximum moment. The maximum moment for a beam is calculated by 

Equation 25. 

 

84
max

max

WLLF
M +=                                                   (25) 

 

     In Equation 25, L is the length of the beam and W is the weight of the beam. The 

maximum moment is assumed to be at the center of the beam. The tensile strength of the 

beam is calculated as the maximum tensile stress in the beam. This is also calculated 

using statics in Equation 26. 
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     In Equation 26, c is the depth to the neutral axis of the beam and I is the moment of 

inertia of the beam. From the above equations, the results of the 9 beam tests are 

summarized in Table 34. Table 34 shows that the tensile strength of the coldest 

specimens was about 35 kPa greater than that for room temperature specimens.  The 

tensile strength of the room temperature specimens tended to be about 28 kPa higher than 

the warmest specimens. Table 34 also shows that the coldest specimens were up to 2 

orders of magnitude stiffer than the warmest specimens. Table 35 shows the average 

results among all the beam tests. In addition to Table 35, the average results were plotted 

in Figure 127 which shows tensile strength as a function of temperature. Note that the 

polynomial fit had an excellent correlation in Figure 127. Table 34, 35, and Figure 127 

are all based on the singular variable that the rate is fixed at 635 mm/min displacement. If 

the rate changes from this, the values shown in these figures and tables became less 

accurate since temperature and time are interrelated for visco-elastic materials such as hot 

mix asphalt.  

     For numerical modeling of a pavement overlaying a pipeline, the temperature will be 

the largest variable for the asphalt properties. The temperature at the time of fault offset is 

impossible to predict. An average temperature (and therefore strength) will be used for 

numerical modeling. The temperature chosen was 72°F. In the state of Utah, 72°F is a 

reasonable summertime temperature at night and in the spring/fall, an afternoon 

temperature in the sun.  
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Table 34. Asphalt beam test results 

 

 

Table 35. Beam test tensile strengths 

Temperature Peak Force Displacement 
at Peak 

Maximum 
Moment 

Tensile 
Strength Stiffness 

°C (°F) kN mm N-m kPa kN/mm 

22 (72) 0.525 1.37 13.33 146 0.383 

50 (122) 0.278 1.78 7.54 83 0.156 

-12 (-10) 0.731 0.08 18.11 198 9.138 

 

Test Temp Displacement 
Rate 

Peak 
Force 

Displacement 
at Peak 

Max 
Moment 

Tensile 
Strength Stiffness 

------ �F mm/min kN mm N-m kPa kN/mm 

1A 72 635 0.525 1.54 14.01 77.22 0.341 

1B 72 635 0.508 1.50 12.66 69.64 0.339 

1C 72 635 0.542 1.08 13.33 73.09 0.502 

2A 122 635 0.328 2.00 8.48 46.20 0.164 

2B 122 635 0.246 1.79 7.46 41.37 0.137 

2C 122 635 0.258 1.56 6.67 36.54 0.165 

3A -10 635 0.829 0.18 19.89 109.63 4.600 

3B -10 635 0.672 0.04 16.27 88.95 16.80 

3C -10 635 0.676 0.03 18.19 199 22.53 
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Figure 127. Relationship of tensile strength and temperature 

 
 

FLAC Analysis with AC Pavement 

     A series of FLAC models were conducted identical to those in Chapter 10, with the 

exception that an asphalt concrete pavement was placed across the top of the model. The 

pavement properties were the same as those found in this chapter. The asphalt concrete in 

the models was 152 mm thick. The asphalt concrete pavement rested on 300 mm of road 

base. The intent of these models was to compare the uplift of a pipe (i.e., force 

displacement relationship) compared to those found in field experimentation and FLAC 

modeling done in comparison to the field uplift tests.  The tensile strength came from the 

testing in this chapter. The cohesive strength was set to 1 times the tensile strength (as 
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shown earlier in this chapter). The modulus and friction angle were typical as shown 

earlier in this chapter for 72°F. Properties are summarized in Table 36. 

     The model geometry for the soil only FLAC section and EPS Geofoam section were 

shown previously. They are modified by the addition of the asphalt concrete pavement 

and are shown in Figures 128 and 129. Figure 128 shows the soil backfill section 

geometry modified with pavement section and Figure 129 shows the EPS Geofoam 

section modified with pavement section. 

     The asphalt concrete pavement was an order of magnitude stiffer than the UTBC in 

the soil model, and as a stiffer element, resisted more load. The asphalt pavement also 

had a much higher tensile strength than the soils and was able to stretch much more than 

the soil elements. The deformed shape behaved as a beam bending and bulging above the 

uplifting soil or EPS Geofoam mass. Figure 130 shows that for the soil backfill system, 

this was true, while Figure 131 shows the same for the EPS Geofoam sections. Figures 

130 and 131 are the deformed FLAC mesh after the end of uplift. 

 

Table 36. Properties of asphalt concrete for FLAC modeling 

Density Elastic 
Modulus 

Poisson’ s 
Ratio 

Friction 
Angle 

Cohesive 
Strength 

Tensile 
Strength 

Kg/m3 kPa ------------ deg kPa kPa 

2346.93 940000 0.25 45 146 146 
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      The pavement section in Figures 130 and 131 appears to be intact, though deformed. 

In the soil backfill section, there had not been separation of elements because of the 

tensile strength, but the material had failed completely in shear. In the EPS Geofoam 

backfill section, conversely, the pavement section had failed in tension and was being 

held together by its shear strength. This was likely an effect of the stiff and rigid 

reinforced concrete load distribution slab that sits atop the EPS Geofoam block. 

     The force-displacement data from the FLAC models with an asphalt concrete 

pavement section were exported from FLAC and imported into EXCEL to plot with the 

field test data and the FLAC modeling without a pavement section. The curves from the 

asphalt concrete analyses are shown plotted together in Figure 132. Figure 132 shows, 

like the FLAC models without a pavement section, that the soil backfill section had more 

resistance to uplift than the EPS Geofoam section. Figure 133 shows the soil backfill 

section FLAC analysis for cases with and without a pavement section as well as the field 

data. Figure 134 shows the EPS Geofoam section FLAC analysis for cases with and 

without a pavement section as well as the field data.  

     The asphalt pavement system in the FLAC models increased both the peak resisting 

force to uplift and the stiffness of the system response when compared to the uplift 

behavior of the two systems in the actual field test. The force displacement curves in 

Figures 133 and 134 show that the asphalt pavement had two effects on the FLAC 

models in uplift. They first show that the peak uplift force increased when a HMA is 

added to the model. The peak force in the soil backfill section increased by 51 kN, a 9% 

increase. The peak force in the EPS Geofoam backfill section increased by 135 kN, a 

100% increase. 
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     The second effect of the asphalt pavement above the uplifting pipe was the increased 

stiffness of the systems. The soil backfill section stiffness with the asphalt pavement 

system was 12220 kN/m/m, a 17% increase over the stiffness of the soil backfill section 

without an asphalt pavement system. The EPS Geofoam section stiffness from the FLAC 

models with asphalt pavement was 322 kN/m/m, a 95% increase over the EPS Geofoam 

section without an asphalt pavement section.  

     With this asphalt pavement investigation, it is important to note that some simplifying 

assumptions were made. It was assumed for the FLAC analysis that the pavement section 

was 152 mm thick. Actual pavement thicknesses can vary after years of maintenance. 

Temperature that lies in the median of the seasonal temperature spectrum was assumed. 

Had a colder temperature been assumed, the asphalt pavement in the FLAC models 

would have been much stronger and stiffer, and conversely had a warmer temperature 

been assumed, the asphalt modeled would have been softer. The condition of the 

pavement was assumed to be in good condition. No pre-existing cracking of the asphalt 

concrete was assumed. Cracking of asphalt concrete pavements reduces the strength and 

stiffness of the pavement system. The assumption of no traffic loads at the time of uplift 

was also assumed. The effects of pavement system thickness, temperature, pavement 

condition, traffic loading and other variables can be studied parametrically by changing 

the FLAC analysis as appropriate. This asphalt property investigation and FLAC 

modeling show that the presence of an asphalt pavement in good condition, at an average 

daytime temperature, has the effect of increasing both the stiffness and peak resisting 

force of a pipe in uplift with or without EPS Geofoam. The EPS Geofoam system, 

however, still provides less uplift resistance to the pipe.  
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CHAPTER 12 
 

 SUMMARY OF PIPE UPLIFT WITH EPS GEOFOAM COVERS 
 

     For pipeline design of an active fault crossing, or other location of permanent ground 

deformation, the normalized uplift resistance (Nv) and the system stiffness (Kv) are 

required. The design of pipelines in uplift using Nv and Kv was established by ASCE 

(1984) based on the work of Newmark and Hall (1975) and Kennedy et al. (1979). The 

uplift resistance and system stiffness results from field experimentation and numerical 

simulations for a pipe in uplift were normalized by Equations 27 and 28 to make them 

dimensionless (Trautmann and O’ Rourke, 1984) for future design work of pipelines 

crossing active normal faults. The term Nv is the vertical uplift factor for a system, 

similar to a bearing capacity factor from foundation design. The term Nv was calculated 

by dividing the total uplift resistance on a pipe by the unit weight of the overburden 

material (γ), the diameter of the pipe (D), the vertical height of cover over the pipe (H) 

and the length of the pipe uplifting (L). 

     The parameter zu is the dimensionless displacement at the peak. The dimensionless 

displacement in Equation 28 was calculated by dividing the displacement of the uplifting 

pipe by the diameter of the pipe. The stiffness of the system is denoted by the symbol Kv. 

The stiffness of the system can be taken as the tangent or secant slopes to the force 

displacement curve. 
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     The ASCE (1984) and ALA (2005) guidelines for pipe design give three different 

ways to define the stiffness of the system (Kv) and the dimensionless displacement (zu), 

similar to the uplift factor. The three ways to define system stiffness in uplift are denoted 

as Kv1, Kv2 and Kv3, where Kv1 is the initial tangent stiffness, Kv2 is the secant stiffness at 

50% peak stress and Kv3 is the secant stiffness at the peak. The three ways to define 

normalized system resistance to uplift are denoted as Nv1, Nv2 and Nv3, where Nv1 is the 

uplift resistance at the end of the initial linear portion of the curve, Nv2 is the 50% peak 

resistance and Nv3 is the peak resistance. The three ways to define the dimensionless 

displacement are denoted as zu1, zu2 and zu3, where zu1 is the dimensionless displacement 

at the end of the initial tangent portion of the curve, zu2 is the dimensionless displacement 

at the 50% peak force and zu3 is the dimensionless displacement at the peak resisting 

force. The units for Kv are kN/m/m or kN/m2. 

     For the soil backfill section, Table 37 summarizes the field test and FLAC analysis 

results including the effects of the addition of an asphalt pavement section. Table 37 

includes the ASCE (1984) and ALA (2005) recommended values for clayey backfill. For 

the EPS Geofoam section, Table 38 summarizes the field test and FLAC analysis results 

including the effects of the addition of interface elements to the model and the addition of 

an asphalt pavement system to the section.  
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Table 37. Soil backfill section research program results 

  

 

 

 

 

 

 

 

 

 

     In the EPS Geofoam section results presented in Table 38, it is important to note that 

the FLAC analysis with no interfaces represented cases where there is complete, uniform 

contact between trench side walls and EPS Geofoam block such that the Geofoam is 

“ gripped”  by the trench side walls, with full frictional interaction. The FLAC analyses 

with interfaces had reduced friction, indicating cases where a geomembrane is placed 

between EPS Geofoam block and trench side walls or other cases where simple sliding is 

not impeded as occurred in the field test. To calculate the factors in Tables 37 and 38, the 

length of pipe was 4.572 m, the depth of cover was 2 m and the pipe diameter was 0.324 

m. The unit weight of the clayey fill was 17.76 kN/m3 and the unit weight of the EPS 

Geofoam was 0.3 kN/m3. 

 ASCE - ALA 
Recommended Field Test FLAC 

FLAC with 
Asphalt 

Pavement 

Nv1 NA 4.0 3.8 3.8 

Nv2 NA 5.3 5.7 6.2 

Nv3 10 10.5 11.4 12.4 

zu1 NA 0.03 0.015 0.015 

zu2 NA 0.04 0.03 0.04 

zu3 0.32 0.20 0.31 0.17 

Kv1 NA 5460 8135 6870 

Kv2 NA 4375 6124 5470 

Kv3 1260 1625 1230 2440 
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Table 38. EPS Geofoam section research program results 

 

 

 

 

 

 

 

 

 

 

 

 

      The field test with clay backfill, as shown in Table 34, was predicted very well by the 

ASCE (1984) and ALA (2000) recommendations and by the FLAC analysis. The effects 

of the asphalt concrete pavement on the uplift resistance of the system was that that 

dimensionless displacements were reduced by a factor of 2 from the section with no 

pavement section, and the stiffness of the system with asphalt pavement increased by a 

factor of 2 over the soils backfill system with no pavement section. The EPS Geofoam 

test had the peak force and uplift factors predicted well by the FLAC analysis with 

interfaces representing a decrease in block to soil friction (as could be achieved by 

placement of a geo-membrane between the EPS block and the adjacent soil). The addition 

 Field 
Test 

FLAC 
No 

Interface 

FLAC 
With 

Interface 

FLAC with 
Asphalt 

Pavement 

Nv1 1.7 4.9 1.8 2.7 

Nv2 3.3 4.9 3.2 6.4 

Nv3 6.5 9.7 6.3 12.7 

zu1 0.003 0.05 .05 0.03 

zu2 0.17 0.05 0.15 0.09 

zu3 0.58 0.28 0.62 0.46 

Kv1 7775 1403 475 1230 

Kv2 286 1403 300 970 

Kv3 158 490 144 388 
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of the asphalt pavement system in FLAC had the effect of increasing the uplift factor by a 

factor of 2, and increasing the stiffness of the EPS Geofoam system 100%.  

     The terms Nv1, Nv2, Nv3, zu1, zu2, zu3, Kv1, Kv2 and Kv3 are used in finite-element 

pipeline modeling. The finite element of the pipeline is done by first placing vertical 

uplift, bearing, longitudinal and transverse nonlinear springs at each pipe structural 

element (MCEER, 1999). The nonlinear springs are defined by Nv1, Nv2, Nv3, zu1, zu2, zu3, 

Kv1, Kv2 and Kv3. The pipeline distress to fault offset is modeled by displacing one half of 

the model vertically, while holding the far end of the pipe fixed in space (ASCE, 1984). 

This approach is well documented, and good agreement with observed case histories has 

been achieved (Arimin and Lee, 1991, and Meyersohn, 1991). 

     If the Kennedy et al. (1979) approach is used for pipeline design, the term Nv3 and zu3 

are used with Equations 29 and 30 (MCEER, 1999). Equations 29 and 30 use pipe 

diameter (D), pipe stress due to elongation (σ), pipe burial depth (H), pipe wall thickness 

(t) and bending strain (εb). The pipe bending strain (εb) is then checked against the steel 

structural failure model chosen by the designer. If the pipe bending strain is below the 

failure threshold, the design is finalized; if not, the design is iterated until the bending 

strains are tolerable.  

 

c
b R

D
2

=ε                                                               (29) 
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    In summary, Tables 37 and 38 provide the designer directly the parameters required for 

pipeline fault-offset in uplift when using the EPS Geofoam cover system developed 

herein. The ASCE-ALA recommendations for a pipe uplifting through a clayey soil were 

matched by both the FLAC modeling and the field uplift test. The EPS Geofoam system 

input parameters are consistent between field test and FLAC model with interfaces.  
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CHAPTER 12 
 

 CONCLUSIONS 
 

     The use of an EPS Geofoam cover system for pipelines undergoing permanent ground 

displacement (PGD) from faulting and other geological mechanisms has been investigated 

using laboratory testing, full-scale testing and numerical modeling. The overall conclusion is 

that when used as a light-weight cover, EPS Geofoam cover systems offer significant 

reductions in resistance to buried pipelines displacing from fault offset or other forms of 

permanent ground deformation. 

     It was concluded that when EPS Geofoam is used as a compressible inclusion in the 

sidewalls or bottom of a trench, this application has limited value in reducing the forces that 

develop on the pipe for systems undergoing a significant amount of PGD.  As the pipe is 

pushed into the EPS, a localized strain hardening zone develops within the EPS near the 

contact zone and such behavior significantly reduces the effectiveness of the compressible 

inclusion. It was found that EPS Geofoam behavior in compressive loading against the 

trench sidewalls or bottom is highly nonlinear and experiences significant strain hardening 

at higher compressive strains. In addition, localized shearing of the EPS block occurs near 

the corners of the block where shear stresses are maximized. Thus, it is recommended that 

significant strain-hardening behavior be avoided when using EPS as a compressible 

inclusion in the sidewalls or bottom of a trench. The recommendations for a compressible 
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inclusion concept were confirmed using a set of full-scale horizontal load tests conducted on 

a buried steel pipe pushed horizontally against a Geofoam compressible inclusion. These 

tests showed that at a relatively large horizontal displacement (greater than about 150 mm), 

the Geofoam strained hardened as it was compressed and the total force to the pipe 

increased to values greater than those measured using a sand backfill.  However, a Geofoam 

compressible inclusion has some beneficial effect since these tests also showed that at 

smaller horizontal displacements (less than 150 mm), the compression of Geofoam from the 

pipe loading produced a smaller resisting force when compared with a sand backfill.  

It is concluded that the application of EPS as a light-weight cover system should be 

considered for pipes that may undergo both vertical and horizontal PGD. Because of its 

extremely low mass density, a Geofoam cover system significantly reduces the vertical 

and/or uplift forces on a pipe system undergoing vertical PGD (e.g., normal faulting).  In 

the case of vertical uplift of the pipe system, full-scale testing and numerical modeling 

demonstrated that the total force on the pipe is reduced by a factor of about 3 to 4 when 

compared with a trench backfilled only with soil. In addition, this research shows that if 

an EPS cover system is constructed atop a pipe that undergoes horizontal PGD (e.g., 

strike-slip faulting), the full-scale testing and numerical modeling suggests that the total 

force on the pipe can be reduced by a factor of about 2, even if the pipe is pushed 

horizontally into a sand backfill. This latter benefit occurs because the EPS light-weight 

cover system significantly reduces the in situ vertical stresses, which in turn reduces the 

resistance of the soil to horizontal displacement.   

     It was concluded that the presence of an asphalt pavement atop and uplifting EPS 

cover system significantly decreases the efficiency of the system in uplift. The strength 
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and stiffness of asphalt concrete in uplift rupture were investigated by literature survey 

and experimentation. The effects of an asphalt concrete pavement system atop a pipe 

uplifting were explored. It was found that the presence of an asphalt pavement system 

overlying a pipe uplifting from vertical PGD increases the peak resisting force and the 

stiffness of the system significantly and the modeling suggests the increase may be a 

100%, or greater.  

     Finally, it was concluded that numerical modeling is an adequate tool for development 

of soil-Geofoam-pipe interaction. A series of numerical models were developed to 

demonstrate that such modeling can be used to evaluate a light-weight cover system for 

design of pipelines crossings of faults. The numerical models demonstrate that different 

configurations and materials can be incorporated into the investigation of system 

resistance to uplift of a pipe for future design work. The force displacement relationships 

obtained in such analyses of complicated EPS Geofoam configurations can be used to 

model pipeline distress from fault rupture according to methods developed by Newmark 

and Hall (1975), Kennedy et al. (1979) and the finite-element method.  
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 APPENDIX A 
 

 FLAC SOIL BACKFILL SECTION CODE 
 

config ats extra 1 
grid 60,30 
gen (-3.0,0.0) (-3.0,3.0) (3.0,3.0) (3.0,0.0) ratio 1.0,1.0 i=1,61 j=1,31 
set gravity=9.81 
fix  x y j 1 
fix  x i 61 
fix  x i 1 
model elastic 
gen circle 0.0,1.0 0.161925 
group 'User:Bedding Sand' i 27 34 j 6 13 
model mohr group 'User:Bedding Sand' 
prop density=1800.0 bulk=8.33333E6 shear=3.84615E6 cohesion=0.0 friction=32.0 
dilation=32.0 tension=0.0 group 'User:Bedding Sand' 
group 'User:Clayey Fill' i 24 37 j 14 26 
model ss group 'User:Clayey Fill' 
prop density=1810.0 bulk=6.66667E6 shear=2.22222E6 ftab=1 ctab=2 dtab=3 ttab=4 
group 'User:Clayey Fill' 
group 'User:UTBC' i 21 40 j 27 30 
model mohr group 'User:UTBC' 
prop density=1990.0 bulk=5.33333E7 shear=3.2E7 cohesion=2500.0 friction=43.0 
dilation=43.0 tension=2500.0 group 'User:UTBC' 
group 'User:Native Sand' i 1 20 j 22 30 
model ss group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 ftab=5 ctab=6 dtab=7 ttab=8 
group 'User:Native Sand' 
group 'User:Native Sand' i 21 23 j 22 26 
model ss group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 ftab=5 ctab=6 dtab=7 ttab=80 
group 'User:Native Sand' 
group 'User:Native Sand' i 38 40 j 22 26 
model ss group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 ftab=5 ctab=6 dtab=7 ttab=8 
group 'User:Native Sand' 
group 'User:Native Sand' i 41 60 j 22 30 
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model ss group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 ftab=5 ctab=6 dtab=7 ttab=8 
group 'User:Native Sand' 
group 'User:Native Clay' i 1 23 j 1 21 
model ss group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 ftab=9 ctab=10 dtab=11 ttab=12 
group 'User:Native Clay' 
group 'User:Native Clay' i 38 60 j 1 21 
model ss group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 ftab=9 ctab=10 dtab=11 ttab=12 
group 'User:Native Clay' 
group 'User:Native Clay' i 24 37 j 1 5 
model ss group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 ftab=9 ctab=10 dtab=11 ttab=12 
group 'User:Native Clay' 
group 'User:Native Clay' i 24 26 j 6 13 
model ss group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 ftab=9 ctab=10 dtab=11 ttab=12 
group 'User:Native Clay' 
group 'User:Native Clay' i 35 37 j 6 13 
model ss group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 ftab=9 ctab=10 dtab=11 ttab=12 
group 'User:Native Clay' 
table 1 0,28 .09,27 0.15,26 
table 2 0,35910 .05,23940 .15,11970 
table 3 0,14 .09,7 .15,0 
table 4 0,35910 .09,23940  0.15,11970 
table 5 0,27.2 .09,23.2 0.15,24.8 
table 6 0,35910 .09,35910 .215,15940 
table 7 0,14 .09,7 .15,0 
table 8 0,35910 .09,35910 .15,15940 
table 9 0,23.8 .09,23.0 0.15,20 
table 10 0,59850 .90,35910 .15,20000 
table 11 0,14 .09,7 .15,0 
table 12 0,59850 .09,35910 .15,20000 
hist 999 unbalanced 
solve 
ini ydisp=0 
ini xdisp=0 
fix  x mark 
solve 
model null region 30 11 
group 'null' region 30 11 
group delete 'null' 
struct node 1 0.1495992,0.938034 
struct node 2 0.161925,1.0 
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struct node 3 0.1495992,1.0619661 
struct node 4 0.114498265,1.1144983 
struct node 5 0.061966013,1.1495992 
struct node 6 1.2359384E-15,1.161925 
struct node 7 -0.061966013,1.1495992 
struct node 8 -0.114498265,1.1144983 
struct node 9 -0.1495992,1.0619661 
struct node 10 -0.161925,1.0 
struct node 11 -0.1495992,0.938034 
struct node 12 -0.114498265,0.88550174 
struct node 13 -0.061966013,0.8504008 
struct node 14 1.2359384E-15,0.838075 
struct node 15 0.061966013,0.8504008 
struct node 16 0.114498265,0.88550174 
struct beam begin node 1 end node 2 seg 1 prop 1001 
struct beam begin node 2 end node 3 seg 1 prop 1001 
struct beam begin node 3 end node 4 seg 1 prop 1001 
struct beam begin node 4 end node 5 seg 1 prop 1001 
struct beam begin node 5 end node 6 seg 1 prop 1001 
struct beam begin node 6 end node 7 seg 1 prop 1001 
struct beam begin node 7 end node 8 seg 1 prop 1001 
struct beam begin node 8 end node 9 seg 1 prop 1001 
struct beam begin node 9 end node 10 seg 1 prop 1001 
struct beam begin node 10 end node 11 seg 1 prop 1001 
struct beam begin node 11 end node 12 seg 1 prop 1001 
struct beam begin node 12 end node 13 seg 1 prop 1001 
struct beam begin node 13 end node 14 seg 1 prop 1001 
struct beam begin node 14 end node 15 seg 1 prop 1001 
struct beam begin node 15 end node 16 seg 1 prop 1001 
struct beam begin node 16 end node 1 seg 1 prop 1001 
interface 1 aside long from 33,10 to 33,10 bside from node 1,16 to node 1 
interface 1 unglued kn=1.35e8 ks=1.35E8 cohesion=0.0 dilation=12 friction=24 
tbond=0.0 bslip=On 
struct prop 1001 e 2E11 area 0.048 I 2.3E-4 
struct node range 15 16 fix x fix y 
solve 
 
ini ydisp = 0 
ini xdisp = 0 
step 2000 
set large 
set st_damping=combined 0.8 
set st_damping struct=combined 0.8 
structure node 1 ini yvel 1e-5 
structure node 2 ini yvel 1e-5 
structure node 3 ini yvel 1e-5 
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structure node 4 ini yvel 1e-5 
structure node 5 ini yvel 1e-5 
structure node 6 ini yvel 1e-5 
structure node 7 ini yvel 1e-5 
structure node 8 ini yvel 1e-5 
structure node 9 ini yvel 1e-5 
structure node 10 ini yvel 1e-5 
structure node 11 ini yvel 1e-5 
structure node 12 ini yvel 1e-5 
structure node 13 ini yvel 1e-5 
structure node 14 ini yvel 1e-5 
structure node 15 ini yvel 1e-5 
structure node 16 ini yvel 1e-5 
set geometry=0.06 
hist 1 node 1 ydisp 
call str.fin 
; F_n is the sum of the normal forces along the outside of the pipe 
def F_n 
 sum = 0.0 
 pnt = imem(str_pnt+$ksnode) 
 loop while pnt # 0 
  sum = sum + fmem(pnt+$kndf2c) 
  pnt = imem(pnt) 
 endLoop 
 F_n = ABS(sum) 
end 
step 28000 
 
 
 

FLAC EPS Geofoam Cover System Code 

config ats 
grid 66,33 
gen (-3.0,0.0) (-3.0,3.3) (3.6,3.3) (3.6,0.0) ratio 1.0,1.0 i=1,67 j=1,34 
model elastic 
; 
;cut grid into chunks 
model null i 21 
model null i 25 
model null i 28 
model null i 46 
model null i 42 
model null i 39 
model null j 30 
model null j 28 

307



 

 

model null j 15 
; 
;Move and attach the bottom chunks into correct geometry 
gen -1.0,0 -1.0,1.4 -0.7,1.4 -0.7,0 ratio 1.0,1.0 i=22,25 j=1,15 
attach aside from 21,15 to 21,1 bside from 22,15 to 22,1 
gen -0.7,0 -0.7,1.4 -0.5,1.4 -0.5,0 ratio 1.0,1.0 i=26,28 j=1,15 
attach aside from 26,15 to 26,1 bside from 25,15 to 25,1 
gen -0.5,0 -0.5,1.4 0.5,1.4 0.5,0 ratio 1.0,1.0 i=29,39 j=1,15 
attach aside from 29,15 to 29,1 bside from 28,15 to 28,1 
gen 0.5,0 0.5,1.4 0.7,1.4 0.7,0 ratio 1.0,1.0 i=40,42 j=1,15 
attach aside from 40,15 to 40,1 bside from 39,15 to 39,1 
gen 0.7,0 0.7,1.4 1.0,1.4 1.0,0 ratio 1.0,1.0 i=43,46 j=1,15 
attach aside from 42,15 to 42,1 bside from 43,15 to 43,1 
gen 1.0,0 1.0,1.4 3.0,1.4 3.0,0 ratio 1.0,1.0 i=47,67 j=1,15 
attach aside from 47,15 to 47,1 bside from 46,15 to 46,1 
; 
;Move and Attach the left chunks into correct geometry 
gen -3,1.4 -3,2.6 -1,2.6 -1,1.4 ratio 1.0,1.0 i=1,21 j=16,28 
attach aside from 1,15 to 21,15 bside from 1,16 to 21,16 
gen -3,2.6 -3,2.7 -1,2.7 -1,2.6 ratio 1.0,1.0 i=1,21 j=29,30 
attach aside from 1,29 to 21,29 bside from 1,28 to 21,28 
gen -3,2.7 -3,3 -1,3 -1,2.7 ratio 1.0,1.0 i=1,21 j=31,34 
attach aside from 1,30 to 21,30 bside from 1,31 to 21,31 
; 
;move and attach the chunks to the left of LDS incl UTBC 
attach aside from 21,28 to 21,16 bside from 22,28 to 22,16 
attach aside from 25,15 to 22,15 bside from 25,16 to 22,16 
gen -1,1.4 -1,2.6 -0.7,2.6 -0.7,1.4 ratio 1.0,1.0 i=22,25 j=16,28 
attach aside from 22,30 to 22,29 bside from 21,30 to 21,29 
attach aside from 25,29 to 22,29 bside from 25,28 to 22,28 
gen -1,2.6 -1,2.7 -0.7,2.7 -0.7,2.6 ratio 1.0,1.0 i=22,25 j=29,30 
gen -1,2.7 -1,3 -0.7,3 -0.7,2.7 ratio 1.0,1.0 i=22,25 j=31,34 
interface 1 aside from 21,34 to 21,31 bside from 22,34 to 22,31 
interface 1 unglued kn=9.6E8 ks=9.6E8 cohesion=11250.0 dilation=0.0 friction=21.5.0 
tbond=11250.0 bslip=On 
interface 2 aside from 25,31 to 22,31 bside from 25,30 to 22,30 
interface 2 unglued kn=9.6E8 ks=9.6E8 cohesion=11250.0 dilation=0.0 friction=21.5 
tbond=0.0 bslip=On 
; 
;move and attach the chunks on the left and below of the LDS 
attach aside from 26,28 to 26,16 bside from 25,28 to 25,16 
attach aside from 28,16 to 26,16 bside from 28,15 to 26,15 
gen -0.7,1.4 -0.7,2.6 -0.5,2.6 -0.5,1.4 ratio 1.0,1.0 i=26,28 j=16,28 
interface 3 aside from 26,30 to 26,29 bside from 25,30 to 25,29 
interface 3 unglued kn=8.7329997E9 ks=8.7329997E9 cohesion=1000.0 dilation=0.0 
friction=13.5 tbond=0.0 bslip=On 
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interface 4 aside from 28,29 to 26,29 bside from 28,28 to 26,28 
interface 4 unglued kn=8.7329997E9 ks=8.7329997E9 cohesion=1000.0 dilation=0.0 
friction=13.5 tbond=0.0 bslip=On 
gen -0.7,2.6 -0.7,2.7 -0.5,2.7 -0.5,2.6 ratio 1.0,1.0 i=26,28 j=29,30 
interface 5 aside from 26,34 to 26,31 bside from 25,34 to 25,31 
interface 5 unglued kn=9.6E8 ks=9.6E8 cohesion=0.0 dilation=0.0 friction=21.5 
tbond=0.0 bslip=On 
attach aside from 28,31 to 26,31 bside from 28,30 to 26,30 
gen -0.7,2.7 -0.7,3 -0.5,3 -0.5,2.7 ratio 1.0,1.0 i=26,28 j=31,34 
; 
;move and attach the chunks of the model that are the foam and above the foam 
interface 6 aside from 29,28 to 29,16 bside from 28,28 to 28,16 
interface 6 unglued kn=1.14422736E8 ks=1.14422736E7 cohesion=0.0 dilation=0.0 
friction=6.0 tbond=0.0 bslip=On 
interface 7 aside from 39,16 to 29,16 bside from 39,15 to 29,15 
interface 7 unglued kn=1.1442273E8 ks=1.1442273E8 cohesion=0.0 dilation=0.0 
friction=32.0 tbond=0.0 bslip=On 
gen -0.5,1.4 -0.5,2.6 0.5,2.6 0.5,1.4 ratio 1.0,1.0 i=29,39 j=16,28 
attach aside from 29,30 to 29,29 bside from 28,30 to 28,29 
attach aside from 39,29 to 29,29 bside from 39,28 to 29,28 
gen -0.5,2.6 -0.5,2.7 0.5,2.7 0.5,2.6 ratio 1.0,1.0 i=29,39 j=29,30 
attach aside from 28,34 to 28,31 bside from 29,34 to 29,31 
attach aside from 39,31 to 29,31 bside from 39,30 to 29,30 
gen -0.5,2.7 -0.5,3 0.5,3 0.5,2.7 ratio 1.0,1.0 i=29,39 j=31,34 
; 
; Move and attach the chuncks on the right of the goeofoam block zone 
attach aside from 42,16 to 40,16 bside from 42,15 to 40,15 
interface 8 aside from 40,28 to 40,16 bside from 39,28 to 39,16 
interface 8 unglued kn=1.14422736E8 ks=1.14422736E7 cohesion=0.0 dilation=0.0 
friction=6.0 tbond=0.0 bslip=On 
gen 0.5,1.4 0.5,2.6 0.7,2.6 0.7,1.4 ratio 1.0,1.0 i=40,42 j=16,28 
attach aside from 40,30 to 40,29 bside from 39,30 to 39,29 
interface 9 aside from 42,29 to 40,29 bside from 42,28 to 40,28 
interface 9 unglued kn=8.7329997E9 ks=8.7329997E9 cohesion=1000.0 dilation=0.0 
friction=13.5 tbond=0.0 bslip=On 
gen 0.5,2.6 0.5,2.7 0.7,2.7 0.7,2.6 ratio 1.0,1.0 i=40,42 j=29,30 
attach aside from 40,34 to 40,31 bside from 39,34 to 39,31 
attach aside from 42,31 to 40,31 bside from 42,30 to 40,30 
gen 0.5,2.7 0.5,3 0.7,3 0.7,2.7 ratio 1.0,1.0 i=40,42 j=31,34 
; 
;Move and attach the chunks to the right of the LDS 
attach aside from 43,28 to 43,16 bside from 42,28 to 42,16 
attach aside from 46,16 to 43,16 bside from 46,15 to 43,15 
gen 0.7,1.4 0.7,2.6 1.0,2.6 1.0,1.4 ratio 1.0,1.0 i=43,46 j=16,28 
attach aside from 46,29 to 43,29 bside from 46,28 to 43,28 
interface 10 aside from 42,30 to 42,29 bside from 43,30 to 43,29 
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interface 10 unglued kn=8.7329997E9 ks=8.7329997E9 cohesion=1000.0 dilation=0.0 
friction=13.5 tbond=0.0 bslip=On 
gen 0.7,2.6 0.7,2.7 1.0,2.7 1,2.6 ratio 1.0,1.0 i=43,46 j=29,30 
interface 11 aside from 43,34 to 43,31 bside from 42,34 to 42,31 
interface 11 unglued kn=9.6E8 ks=9.6E8 cohesion=0.0 dilation=0.0 friction=21.5 
tbond=0.0 bslip=On 
interface 12 aside from 46,31 to 43,31 bside from 46,30 to 43,30 
interface 12 unglued kn=9.6E8 ks=9.6E8 cohesion=11250.0 dilation=0.0 friction=21.5 
tbond=0.0 bslip=On 
gen 0.7,2.7 0.7,3 1,3 1,2.7 ratio 1.0,1.0 i=43,46 j=31,34 
; 
; Move and attach the chunks of the grid on the far right side of the model 
attach aside from 47,28 to 47,16 bside from 46,28 to 46,16 
attach aside from 67,16 to 47,16 bside from 67,15 to 47,15 
gen 1,1.4 1,2.6 3,2.6 3,1.4 ratio 1.0,1.0 i=47,67 j=16,28 
attach aside from 67,29 to 47,29 bside from 67,28 to 47,28 
attach aside from 47,30 to 47,29 bside from 46,30 to 46,29 
gen 1,2.6 1,2.7 3,2.7 3,2.6 ratio 1.0,1.0 i=47,67 j=29,30 
attach aside from 67,31 to 47,31 bside from 67,30 to 47,30 
interface 13 aside from 47,34 to 47,31 bside from 46,34 to 46,31 
interface 13 unglued kn=9.6E8 ks=9.6E8 cohesion=11250.0 dilation=0.0 friction=21.5 
tbond=11250.0 bslip=On 
gen 1,2.7 1,3 3,3 3,2.7 ratio 1.0,1.0 i=47,67 j=31,34 
fix x i=1 
fix x i=67 
fix x,y j=1 
 
 
set gravity=9.81 
gen circle 0.0,1.0 0.161925 
group 'User:Bedding Sand' i 29 38 j 7 14 
model mohr group 'User:Bedding Sand' 
prop density=1800.0 bulk=8.33333E6 shear=3.84615E6 cohesion=0.0 friction=32.0 
dilation=21.333 tension=0.0 group 'User:Bedding Sand' 
group 'User:UTBC' notnull i 22 45 j 31 33 
model mohr notnull group 'User:UTBC' 
prop density=1990.0 bulk=5.33333E7 shear=3.2E7 cohesion=1500.0 friction=43.0 
dilation=43.0 tension=500.0 group 'User:UTBC' 
group 'User:LDS' notnull i 26 41 j 29 
model elastic notnull group 'User:LDS' 
prop density=2000.0 bulk=4.36668E8 shear=3.27501E8 group 'User:LDS' 
group 'User:Geofoam' i 29 38 j 16 27 
model mohr group 'User:Geofoam' 
prop density=22.0 bulk=3.401e7 shear=4.9505e7 cohesion=50000.0 friction=0.0 
dilation=0.0 tension=50000.0 group 'User:Geofoam' 
group 'User:Native Sand' notnull i 1 20 j 24 33 
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model mohr notnull group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 cohesion=45000.0 friction=28.0 
dilation=13.5 tension=45000.0 group 'User:Native Sand' 
group 'User:Native Sand' notnull i 22 24 j 24 29 
model mohr notnull group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 cohesion=45000.0 friction=28.0 
dilation=13.5 tension=45000.0 group 'User:Native Sand' 
group 'User:Native Sand' i 26 27 j 24 27 
model mohr group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 cohesion=45000.0 friction=28.0 
dilation=13.5 tension=45000.0 group 'User:Native Sand' 
group 'User:Native Sand' i 40 41 j 24 27 
model mohr group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 cohesion=45000.0 friction=28.0 
dilation=13.5 tension=45000.0 group 'User:Native Sand' 
group 'User:Native Sand' notnull i 43 45 j 24 29 
model mohr notnull group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 cohesion=45000.0 friction=28.0 
dilation=13.5 tension=45000.0 group 'User:Native Sand' 
group 'User:Native Sand' notnull i 47 66 j 24 33 
model mohr notnull group 'User:Native Sand' 
prop density=1842.0 bulk=7.0833E6 shear=3.26923E6 cohesion=45000.0 friction=28.0 
dilation=13.5 tension=45000.0 group 'User:Native Sand' 
group 'User:Native Clay' notnull i 1 27 j 1 23 
model mohr notnull group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 cohesion=59850.0 friction=23.0 
dilation=0.0 tension=89775.0 group 'User:Native Clay' 
group 'User:Native Clay' notnull i 40 66 j 1 23 
model mohr notnull group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 cohesion=59850.0 friction=23.0 
dilation=0.0 tension=89775.0 group 'User:Native Clay' 
group 'User:Native Clay' i 29 38 j 1 6 
model mohr group 'User:Native Clay' 
prop density=1765.0 bulk=8.33333E6 shear=1.75871E6 cohesion=59850.0 friction=23.0 
dilation=0.0 tension=89775.0 group 'User:Native Clay' 
hist 999 unbalanced 
solve 
 
 
ini ydisp=0 
ini xdisp=0 
fix  x mark 
solve 
model null region 34 10 
group 'null' region 34 10 
group delete 'null' 
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struct node 1 0.114498265,1.1144983 
struct node 2 0.061966013,1.1495992 
struct node 3 -2.2471609E-17,1.161925 
struct node 4 -0.061966013,1.1495992 
struct node 5 -0.114498265,1.1144983 
struct node 6 -0.1495992,1.0619661 
struct node 7 -0.161925,1.0 
struct node 8 -0.1495992,0.938034 
struct node 9 -0.114498265,0.88550174 
struct node 10 -0.061966013,0.8504008 
struct node 11 -2.2471609E-17,0.838075 
struct node 12 0.061966013,0.8504008 
struct node 13 0.114498265,0.88550174 
struct node 14 0.1495992,0.938034 
struct node 15 0.161925,1.0 
struct node 16 0.1495992,1.0619661 
struct beam begin node 1 end node 2 seg 1 prop 1001 
struct beam begin node 2 end node 3 seg 1 prop 1001 
struct beam begin node 3 end node 4 seg 1 prop 1001 
struct beam begin node 4 end node 5 seg 1 prop 1001 
struct beam begin node 5 end node 6 seg 1 prop 1001 
struct beam begin node 6 end node 7 seg 1 prop 1001 
struct beam begin node 7 end node 8 seg 1 prop 1001 
struct beam begin node 8 end node 9 seg 1 prop 1001 
struct beam begin node 9 end node 10 seg 1 prop 1001 
struct beam begin node 10 end node 11 seg 1 prop 1001 
struct beam begin node 11 end node 12 seg 1 prop 1001 
struct beam begin node 12 end node 13 seg 1 prop 1001 
struct beam begin node 13 end node 14 seg 1 prop 1001 
struct beam begin node 14 end node 15 seg 1 prop 1001 
struct beam begin node 15 end node 16 seg 1 prop 1001 
struct beam begin node 16 end node 1 seg 1 prop 1001 
interface 14 aside long from 35,12 to 35,12 bside from node 1,16 to node 1 
interface 14 unglued kn=1.35e8 ks=1.35E8 cohesion=0.0 dilation=12 friction=24 
tbond=0.0 bslip=On 
struct prop 1001 e 2E11 area 0.048 I 2.3E-4 
struct node range 15 16 fix x fix y 
solve 
 
ini ydisp = 0 
ini xdisp = 0 
step 2000 
set large 
set st_damping=combined 5.0 
set st_damping struct=combined 5.0 
structure node 1 ini yvel 1e-5 
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structure node 2 ini yvel 1e-5 
structure node 3 ini yvel 1e-5 
structure node 4 ini yvel 1e-5 
structure node 5 ini yvel 1e-5 
structure node 6 ini yvel 1e-5 
structure node 7 ini yvel 1e-5 
structure node 8 ini yvel 1e-5 
structure node 9 ini yvel 1e-5 
structure node 10 ini yvel 1e-5 
structure node 11 ini yvel 1e-5 
structure node 12 ini yvel 1e-5 
structure node 13 ini yvel 1e-5 
structure node 14 ini yvel 1e-5 
structure node 15 ini yvel 1e-5 
structure node 16 ini yvel 1e-5 
set geometry=0.06 
hist 1 node 1 ydisp 
call str.fin 
; F_n is the sum of the normal forces along the outside of the pipe 
def F_n 
 sum = 0.0 
 pnt = imem(str_pnt+$ksnode) 
 loop while pnt # 0 
  sum = sum + fmem(pnt+$kndf2c) 
  pnt = imem(pnt) 
 endLoop 
 F_n = ABS(sum) 
end 
step 40000 
 
 

FLAC3D Soil Backfill Section Code 

;The clay section model with no interfaces 6-16-09 
;Slightly larger than the 2D model 
; 
;GP Fixity for the model 
fix z range z -.05 .05 
fix x range z -.05 .05 
fix y range z -.05 .05 
fix y range y -0.05 0.05 
fix y range y 4.5 4.6 
fix x range x -3.05 -2.95 
fix x range x 2.95 3.05 
fix y range x -3.05 -2.95 
fix y range x 2.95 3.05 
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; 
;Add gravity 
set grav 0 0 -9.81 
; 
;Add the SEL 
sel liner range cyl end1=(0.0,0.0,1.838075)  end2=(0.0,4.572,1.838075) radius=0.161925  
sel liner prop iso=(2.068423e10, 0.0) thick=0.0127 dens=3500 
sel liner PROP cs_nk=8e8 cs_sk=8e8 & 
               cs_ncut=0 cs_scoh=0 cs_scohres=0 cs_sfric=20.0 
; 
;fix the pipe against movement in x and y 
sel node fix x y  
;add material models 
model mohr range group bedding  
model ss range group fill 
model mohr range group Clay  
model mohr range group Sand 
model mohr range group UTBC   
; 
;add material densities 
prop den=1800 range group bedding  
prop den=1810 range group fill  
prop den=1765 range group clay  
prop den=1842 range group sand 
prop den=1990 range group UTBC   
; 
;add material stiffness 
prop bulk=8.33333E6  shear=3.84615E6  range group bedding  
prop bulk=6.66667E6  shear=2.22222E6  range group fill  
prop bulk=8.33333E6  shear=1.75871E6  range group clay  
prop bulk=7.0833E6  shear=3.26923E6  range group sand  
prop bulk=5.33333E7  shear=3.2E7  range group UTBC 
; 
;add strength properties 
prop coh=0.0  ten=0.0  fric=32  dil=32  range group bedding 
prop coh=tab1  ten=tab2  fric=tab3  dil=tab4  range group fill 
prop coh=59850  ten=89775  fric=23  dil=0 range group clay 
prop coh=45000  ten=45000  fric=28  dil=13.5  range group sand 
prop coh=2500  ten=500  fric=43  dil=43  range group UTBC 
; 
;solve the analysis for the in-situ conditions 
solve 
; 
;reset the displacements to zero 
ini ydisp = 0.0 
ini xdisp = 0.0 

314



 

 

ini zdisp = 0.0 
solve 
; 
;Fix the pipe in the Z direction prior to uplift 
sel node fix z  
solve 
; 
;begin uplift of pipe 
sel liner prop slide=on 
sel node init xvel=0.0 yvel=0.0 
sel node INIT zVel=5e-5 
set large 
set geometry 0.05 
sel set damp combined 
history id=1 unbal 
history id=10 sel node zdisp id=1 
step 5000 
 
 
 
 

FLAC3D EPS Geofoam Cover System Code 

;The EPS Geofoam section model with no interfaces 6-16-09 
;Slightly larger than the 2D model 
; 
;GP Fixity for the model 
fix z range z -.05 .05 
fix x range z -.05 .05 
fix y range z -.05 .05 
fix y range y -0.05 0.05 
fix y range y 4.5 4.6 
fix x range x -3.05 -2.95 
fix x range x 2.95 3.05 
fix y range x -3.05 -2.95 
fix y range x 2.95 3.05 
; 
;Add gravity 
set grav 0 0 -9.81 
; 
;Add the SEL 
sel liner range cyl end1=(0.0,0.0,1.838075)  end2=(0.0,4.572,1.838075) radius=0.161925  
sel liner prop iso=(2.068423e10, 0.0) thick=0.0127 dens=3500 
sel liner PROP cs_nk=8e8 cs_sk=8e8 & 
               cs_ncut=0 cs_scoh=0 cs_scohres=0 cs_sfric=20.0 
; 
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;fix the pipe against movement in x and y 
sel node fix x y  
;add material models 
model mohr range group bedding  
model elast range group LDS 
model mohr range group Geofoam 
model mohr range group Clay  
model mohr range group Sand 
model mohr range group UTBC   
; 
;add material densities 
prop den=1800 range group bedding  
prop den=2280 range group LDS 
prop den=29   range group Geofoam 
prop den=1765 range group clay  
prop den=1842 range group sand 
prop den=1990 range group UTBC   
; 
;add material stiffness 
prop bulk=8.33333E6  shear=3.84615E6  range group bedding  
prop bulk=6.66667E9  shear=2.22222E9  range group LDS  
prop bulk= 3.4010e7  shear=4.95050e7  range group Geofoam 
prop bulk=8.33333E6  shear=1.75871E6  range group clay  
prop bulk=7.0833E6  shear=3.26923E6  range group sand  
prop bulk=5.33333E7  shear=3.2E7  range group UTBC 
; 
;add strength properties 
prop coh=0.0  ten=0.0  fric=32  dil=32  range group bedding 
prop coh=50000  ten=75000 fric=0  dil=0  range group Geofoam 
prop coh=59850  ten=89775  fric=23  dil=0 range group clay 
prop coh=45000  ten=45000  fric=28  dil=13.5  range group sand 
prop coh=2500  ten=500  fric=43  dil=43  range group UTBC 
; 
;solve the analysis for the in-situ conditions 
solve 
; 
;reset the displacements to zero 
ini ydisp = 0.0 
ini xdisp = 0.0 
ini zdisp = 0.0 
solve 
; 
;Fix the pipe in the Z direction prior to uplift 
sel node fix z  
solve 
; 
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;begin uplift of pipe 
sel liner prop slide=on 
sel node init xvel=0.0 yvel=0.0 
sel node INIT zVel=5e-5 
set large 
set geometry 0.05 
sel set damp combined 
history id=1 unbal 
history id=10 sel node zdisp id=1 
step 4000 
 
 
 

FLAC EPS Geofoam Pipe Interaction Code 

config dynamic extra 5 
grid 18,18 
set dynamic off 
set=large 
set geometry=0.05 
set st_damping=combined 10.0 
set st_damping struct=combined 10.0 
model elastic 
gen circle 9.0,2.0 2.0 
ini x mul 0.0254 
ini y mul 0.0254 
fix  x y j 19 
fix  x y i 9 11 j 5 
fix  x y i 12 j 2 4 
fix  x y i 9 11 j 1 
fix  x y i 8 j 2 4 
model null i 1 7 j 1 4 
group 'null' i 1 7 j 1 4 
group delete 'null' 
model null i 12 18 j 1 4 
group 'null' i 12 18 j 1 4 
group delete 'null' 
model null i 11 j 1 
group 'null' i 11 j 1 
group delete 'null' 
model null i 11 j 4 
group 'null' i 11 j 4 
group delete 'null' 
model null i 8 j 4 
group 'null' i 8 j 4 
group delete 'null' 
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model null i 8 j 1 
group 'null' i 8 j 1 
group delete 'null' 
interface 1 aside from 1,5 to 19,5 bside from 9,5 to 11,5 
interface 1 unglued kn=4032e6 ks=4032e6 cohesion=0.0 dilation=0.0 friction=0 
tbond=0.0 bslip=Off 
group 'User:EPS15' j 5 18 
model mohr notnull group 'User:EPS15' 
prop density=15.0 bulk=0.12E6 shear=0.18E6 cohesion=37e3 friction=0.0 dilation=0.0 
tension=74e3 notnull group 'User:EPS15' 
group 'User:Pipe' i 9 10 j 1 4 
model elastic group 'User:Pipe' 
prop density=500.0 bulk=3.3e9 shear=3.6e9 group 'User:Pipe' 
group 'User:Pipe' i 11 j 2 3 
model elastic group 'User:Pipe' 
prop density=500.0 bulk=3.3e9 shear=3.6e9 group 'User:Pipe' 
group 'User:Pipe' i 8 j 2 3 
model elastic group 'User:Pipe' 
prop density=500.0 bulk=3.3e9 shear=3.6e9 group 'User:Pipe' 
set gravity 9.81 
his unbal 999 
his syy 10 i 10 j 18 
his ydisp 998 i 10 j 19 
his ydisp 101 i 10 j 5 
his ydisp 102 i 10 j 6 
his ydisp 103 i 10 j 7 
his ydisp 104 i 10 j 8 
his ydisp 105 i 10 j 9 
def sumforce 
  totforce = 0 
  vertdisp = 0 
   loop i (1,izones) 
   loop  j (1,jzones) 
   totforce = totforce + yforce (i,j) 
   sumforce = totforce*(-0.225) 
   vertdisp = ydisp(10,19)*100/2.54*(-1) 
   end_loop 
   end_loop 
end 
his vertdisp 106 
his sumforce 107 
step 2000 
apply yvelocity -1.1E-6 from 1,19 to 19,19 
apply xvelocity = 0 from 1,19 to 19,19 
step 75000 
hist write 10 vs 9 begin 1 skip 20 
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set = large 
set geometry=0.05 
set st_damping=combined 10.0 
set st_damping struct=local 10.0 
set update=5 
config 
grid 18,18 
model elastic 
; 
; Geofoam properties 
prop density = 20 bulk = 1.77e6 shear = 2.65e6; 
ini x mul 0.0254 
ini y mul 0.0254 
fix  x y j 1 
his unbal 999 
set gravity 9.81 
step 2000 
ini ydisp = 0 
apply yvelocity -1.235E-6 from 1,19 to 19,19 
apply xvelocity 0 from 1,19 to 19,19 
def install 
  avgstress = 0 
  avgstrain = 0 
  totalxforce = 0 
  whilestepping 
  loop i (1,izones) 
    loop j (1,jzones) 
       vstrain = ((0- ydisp(i,j+1) - (0 - ydisp(i,j)))/0.0254) 
       vstress = syy(i,j)*(-1) 
       avgstrain = avgstrain + vstrain/18/18 
       avgstress = avgstress + vstress/18/18 
       totalxforce = totalxforce + xforce(i,j) 
       if vstrain > 0.01 
             bulk_mod(i,j)= 1.77e6/(1+(vstrain-0.01)*230) 
             shear_mod(i,j) = 1.5*bulk_mod(i,j) 
             if vstrain > 0.10 
                bulk_mod(i,j)= 78e3 
                shear_mod(i,j) = 117.5e3 
            endif 
       endif 
    end_loop 
  end_loop 
end 
his avgstrain 998 
his avgstress 997 
his bulk_mod 996 
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his shear_mod 995 
his totalxforce 994 
history 999 unbalanced 
cycle 10000 
cycle 5000 
cycle 5000 
cycle 5000 
cycle 5000 
cycle 5000 
cycle 5000 
cycle 5000 
set st_damping=combined 10.0 
set st_damping struct=combined 10.0 
def EQ_Modulus 
   Whilestepping 
    loop i (1,izones) 
      loop j (5,18) 
        vstrain = ((0- ydisp(i,j+1) - (0 - ydisp(i,j)))/0.0254) 
       vstress = syy(i,j)*(-1) 
       avgstrain = avgstrain + vstrain/18/18 
       avgstress = avgstress + vstress/18/18 
       totalxforce = totalxforce + xforce(i,j) 
       if vstrain > 0.01 
             bulk_mod(i,j)= 1.77e6/(1+(vstrain-0.01)*230) 
             shear_mod(i,j) = 1.5*bulk_mod(i,j) 
             if vstrain > 0.10 
                bulk_mod(i,j)= 78e3 
                shear_mod(i,j) = 117.5e3 
            endif 
       endif 
      end_loop 
    end_loop 
end 
EQ_Modulus 
solve 
apply yvelocity -1.000E-6 from 1,19 to 19,19 
step 45000 
his write 3 vs 4 
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 APPENDIX B 
 

 GEOFOAM EXPERIMENTAL DATA 
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 APPENDIX C 
 

 DIRECT SHEAR TESTS BETWEEN EPS GEOFOAM  

 AND GEOMATERIALS 
 

     In an effort to better understand the mechanisms involved in the uplift field tests, a 

series of direct shear tests were conducted. The purpose of the tests is to find the stiffness 

and strength of interfaces between EPS Geofoam and the geo materials used in the uplift 

tests including the native trench wall materials. These tests were conducted in a standard 

direct shear apparatus with the Geofoam comprising one half of the test specimen. The 

interface between the two materials in each test was carefully aligned with the small gap 

between the top and bottom rings of the direct shear device. The following figures show 

the results of the tests. Included in the figures are the force-displacement curves as well 

as the Mohr-Coulomb failure envelopes found by a series of tests at different normal 

loads.  

     The native soils and clayey fill were remolded to nearly the same density and water 

content as the conditions of the field tests as no undisturbed samples were left after 

triaxial testing. The bedding sand used for the uplift tests was placed in a very loose 

condition by pouring the sand from a 150 mm height into the direct shear ring. Figures 

155 to 159 show these laboratory test results. 
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Figure 155. Direct shear results between EPS 15 and native clay 
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Figure 156. Direct shear results for EPS 22 and native clay 
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Figure 157. Direct shear results for EPS 15 and clayey fill 
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Figure 158. Direct shear results for EPS 22 and clayey fill 
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Figure 159. Direct shear results for EPS 15 and bedding sand 
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 APPENDIX D 
 

 TRIAXIAL SOIL TEST DATA PLOTS FOR FIELD UPLIFT TESTS 
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 APPENDIX E 
 

 CYCLIC TESTING OF EPS GEOFOAM 
 

     A series of cyclic triaxial tests were conducted on EPS Geofoam cylinders as part of 

the testing program of this research project. Doctor Aurel Trandafir of the University of 

Utah’ s Geology Department conducted this part of the research program. The cyclic 

triaxial test cycles the specimen rapidly at relatively small strains, simulating earthquake 

and other rapid dynamic cyclic loading of the EPS. These tests were conducted at the 

University of Utah’ s Geologic Engineering Laboratory.  

 

Test Equipment 

     A cyclic triaxial apparatus manufactured by Geocomp Corporation (Massachusetts 

Ave., Boxborough, MA) was used in this investigation to study the cyclic stress-strain 

behavior of EPS Geofoam. This is fully-automated equipment which can be employed to 

carry out both cyclic and static triaxial tests on cylindrical specimens utilizing cyclic and 

triaxial software, respectively.  Once the specimen to be tested was placed in the triaxial 

device and the test conditions are selected, the cyclic triaxial system runs all of the phases 

automatically. Test data were stored in a file for subsequent reduction and plotting by 

way of a report capability built into the software. Different parts of the cyclic triaxial 
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blingwall
Rectangle



 

 

apparatus are shown in Figure 165. Figure 166 shows a photo of the cyclic triaxial 

equipment utilized in the present experimental program.  

 

Materials and Testing Procedure 

       Stress-controlled cyclic uniaxial tests were conducted on 3 types of EPS specimens 

characterized by nominal densities of 15 kg/m3 (EPS15), 22 kg/m3 (EPS22) and 39 kg/m3 

(EPS39). The tests involved EPS cylinders with a diameter of 50 mm and a height to 

diameter ratio of 2:1 (Figure 167). An initial static deviator stress ((σa - σr)static) with a 

magnitude greater than the amplitude of the applied cyclic deviator stress (∆(σa - σr)cyclic) 

was imposed on the specimen prior to starting cyclic loading. The term σa is the vertical, 

axial, compressive stress on the specimen, and σr is the lateral confining stress.  

     The cyclic phase started after the specimen attained equilibrium under the applied 

static deviator stress. All cyclic tests were performed under zero confining pressure. The 

amplitude of the applied cyclic deviator stress ranged within 5 kPa to 39 kPa, and the 

loading frequency was 0.5 Hz. The number of loading cycles in the triaxial tests. Table 

39 summarizes the parameters of each cyclic test, along with the type and the actual 

measured density of the corresponding EPS specimen. 

    Figures 168 to 170 show the position of the initial deviator stress points for cyclic 

uniaxial tests on the stress-strain curve derived from uniaxial monotonic loading with a 

strain rate of 5%/min for each type of EPS. For EPS15, points A1 and B1 correspond to 

static deviator stresses representing 45% and 76% of the deviator stress at yield, (σa - 

σr)yield  (Figure 169). Points A2, B2 and C2 characterizing the initial stress conditions for  
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Table 39. Cyclic test parameters, and type and measured density of tested EPS specimens 
 
Test no. EPS type EPS density 

 (kg/m3) 
(σa - σr)static 

(kPa) 
∆(σa - σr)cyclic 

(kPa) 

Frequency, 
f (Hz) 

Number of 
cycles, N 

1-1 EPS15 14.9 15  
(Point A1 in Fig. 4) 

13 0.5 20 

1-2*) EPS15 14.9 25 
(Point B1 in Fig. 4) 

10 0.5 20 

2-1 EPS22 24.9 21 
(Point A2 in Fig. 5) 

20 0.5 20 

2-2 EPS22 24.9 42 
(Point B2 in Fig. 5) 

39 0.5 20 

2-3 EPS22 24.9 76 
(Point C2 in Fig. 5) 

38 0.5 20 

3-1 EPS39 52.0 21 
(Point A3 in Fig. 6) 

20 0.5 20 

3-2 EPS39 52.0 41 
(Point B3 in Fig. 6) 

39 0.5 20 

3-3 EPS39 52.0 81 
(Point C3 in Fig. 6) 

39 0.5 20 

4-1 EPS22 31.8 40 
(Point B2 in Fig. 5) 

5 0.5 5 

4-2 EPS22 31.8 40 
(Point B2 in Fig. 5) 

10 0.5 5 

4-3 EPS22 31.8 40 
(Point B2 in Fig. 5) 

15 0.5 5 

4-4 EPS22 31.8 40 
(Point B2 in Fig. 5) 

20 0.5 5 

4-5 EPS22 31.8 40 
(Point B2 in Fig. 5) 

25 0.5 5 

4-6 EPS22 31.8 40 
(Point B2 in Fig. 5) 

35 0.5 10 

4-7 EPS22 31.8 40 
(Point B2 in Fig. 5) 

39 0.5 10 

*) The specimen did not achieve equilibrium under the applied static deviator stress, and was still yielding at the beginning of the 
cyclic loading phase. The cyclic phase started just before the triaxial equipment reached the axial strain limit for monotonic loading.  
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Figure 167. EPS cylindrical specimen subjected to cyclic uniaxial testing 
 

EPS15: Uniaxial Monotonic (σσσσr = 0), Strain rate = 5%/min
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Figure 168. Uniaxial monotonic test result on EPS15 
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EPS22: Uniaxial Monotonic (σσσσr = 0), Strain rate = 5%/min
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Figure 169. Uniaxial monotonic test result on EPS22 
 

EPS39: Uniaxial Monotonic (σσσσr = 0), Strain rate = 5%/min
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Figure 170. Uniaxial monotonic test result on EPS39 
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the cyclic uniaxial tests on EPS22, correspond to static deviator stresses representing 

23%, 47% and 85% of the deviator stress at yield.  

 

Cyclic Stress-Strain Behavior of EPS Geofoam 

     The response of EPS to cyclic loading is illustrated in Figures 171 to 185. EPS15 

demonstrated in both tests (i.e., tests 1-1, 1-2) a nonlinear elasto-plastic response. The 

higher the initial deviator stress, the higher the amount of permanent residual 

deformation. For an initial deviator stress corresponding to 23% of (σa - σr)yield, the cyclic 

behavior of EPS22 also appears to be  nonlinear elastic. However, this behavior changes 

to nonlinear elasto-plastic for initial deviator stress levels of 47% and 85% of the yield 

stress. As seen before, the amount of permanent residual deformation increases with 

increasing initial deviator stress for the same amplitude of applied cyclic loading. 

Because of its higher density and stiffness, EPS39 shows a nonlinear elastic behavior for 

all considered initial (static) deviator stress levels. 
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Dynamic Properties of EPS Geofoam 

      The results from tests 4-1 to 4-7 in Table 40 were used to derive the dynamic elastic 

modulus (E) and damping ratio (D) for EPS22. These cyclic uniaxial tests cover a range 

of cyclic axial strain amplitudes from 0.079% to 0.745%.  The calculated E and D values 

are given in Table 40. 

     The dynamic shear modulus (G) and cyclic shear strain amplitude (γc) can be 

calculated based on the dynamic elastic modulus (E) and cyclic axial strain amplitude 

(εac) values from cyclic triaxial tests using the following equations from the elasticity 

theory:  

 

)1(2
E

G
υ+

=                                                       (3113) 

         

acc )1( ευ+=γ                                                    (3214) 

 

where ν represents the Poisson’ s ratio. 

     Figure 186 shows the dynamic shear modulus ratio (G/G0) versus the cyclic shear 

strain amplitude (γc) from cyclic uniaxial tests in comparison to the relationship proposed 

by Athanasopoulos et al. (1999) which is based on Equation 33. 
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Table 40. Dynamic properties of EPS 22 from cyclic uniaxial tests 
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Figure 186. Dynamic shear modulus ratio versus shear strain amplitude for EPS22 
 

Cyclic Strain 
Amplitude 

Dynamic Elastic 
Modulus 

Dynamic Elastic 
Modulus Ratio Damping Ratio 

% kPa ---------------- % 

0.07877 5990 0.9599 11.82 

0.16116 5588 0.8956 16.33 

0.23782 5324 0.8532 14.32 

0.32157 5548 0.8891 13.74 

0.40699 5629 0.9021 1097 

0.65771 4801 0.7694 9.63 

0.74516 4910 0.7868 6.90 
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     In Equation 33, G0 is the initial elastic modulus, and γc0 is a constant with a value 

equal to 2.1%. To be able to compare the experimental results with the relationship 

provided by Equation 33 and since there is no available information on the G0 value for 

the tested EPS22, a G/G0 value at a cyclic shear strain amplitude of 0.079% equal to that 

provided by Equation 33 was assumed (i.e., G/G0 = 0.96). The experimental results 

plotted for various values of the Poisson’ s ratio (i.e., ν = 0 and ν = 0.1) are quite narrowly 

scattered and follow the trend of the Athanasopoulos et al. (1999) relationship, therefore 

being in agreement with Eq. 33.  

     On the other hand, the experimental damping ratio values (Figure 187) obtained from 

cyclic uniaxial tests on EPS22 indicate a completely different trend when compared to 

the relationship proposed by Athanasopoulos et al. (1999) which is given by the Equation 

34: 

 

0c

c

0

1

D10
10D

γ
γ+

−−=                                                 (34) 

where D0 = 0.55% and γc0 = 2.1%. Apparently, the experimental results indicate a 

logarithmic decrease in the damping ratio with increasing amplitude of cyclic axial strain 

for EPS22 (Figure 187). For a Poisson’ s ratio ν = 0, the following equation can be used to  
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D = -5.7046ln(γc) + 6.2692
R2 = 0.9438
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Figure 187. Damping ratio versus shear strain amplitude for EPS22 
 

evaluate the damping ratio of EPS22 at cyclic shear strain levels between 0.1% and 

0.75% (Figure 188): 

 

D (%) = 6.2692 - 5.7046 ln(γc)                            (35) 

     

   with γc expressed in% (%). 
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Conclusions and Recommendations for Cyclic EPS Testing 

     The cyclic uniaxial test results for EPS Geofoam indicate a nonlinear elastic material 

behavior for cyclic axial strain amplitudes up to approximately 0.8%. In this context, the 

dynamic properties required for implementation of the equivalent linear elastic model 

have been evaluated for EPS22.  This testing considered a range of cyclic axial strains 

from 0.079 to 0.745%. The dynamic shear modulus and damping ratio values from this 

testing were also compared with available published relationships.   This showed that the 

shear modulus ratio-cyclic shear strain curve obtained from this program  agreed well 

with the published relationships. 

     However, the experimentally obtained damping values decrease with increasing cyclic 

shear strain amplitude, which is opposite to that shown in previously published relations. 

For cyclic axial strain amplitudes greater than 0.8%, this study shows that EPS22 exhibits 

a nonlinear elasto-plastic behavior that is associated with the occurrence of permanent 

plastic deformation; thus, equivalent linear elastic models may not be appropriate for 

evaluations where the calculated dynamic strains are greater than 0.8%. A more elaborate 

constitutive model that accounts for yielding of the EPS and the accumulation of 

permanent plastic strains is recommended for higher strain cyclic cases. It is also 

important to mention here that the EPS shear modulus degradation and damping curves 

shown herein were unconfined. Therefore, it is recommended that a more detailed 

experimental program involving cyclic triaxial tests on EPS samples subjected to various 

confining stresses and strain levels be conducted in the future to study the effects of these 

factors on the cyclic stress-strain behavior and associated dynamic properties. 
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 APPENDIX F 
 

 LATERAL BOX TEST EQUIPMENT 
 

Loading Device 

     The actuator used in this test program utilized a MTS electronic control and data 

acquisition system. The actuator has a maximum capacity of 445 kN with a maximum 

stroke of 381 mm. The maximum displacement rate for the ram is 3.048 m per minute. 

The ram is powered by a MTS pneumatic pump (Figure 188) with computer controlled 

manifold and servo. Feedback for the system is through the displacement transducer and 

the tests were done as displacement controlled tests. (The system is capable of cyclic 

testing though this capability was not utilized in this test program.)  The actuator was 

controlled by an MTS control box with a signal provided to it by a National Scientific DC 

signal generator and Lab ViewTM to control the rate of the piston extension. 

 

Instrumentation 

     Several types of measurements were taken during the test program. The total load 

applied to the pipe by the actuator was measured by a Houston Scientific load cell 

(Figure 189). The displacement of the actuator was measured with a displacement. 

Vibrating wire and resistant base total earth pressure cells were placed in the backfill to 

measure the horizontal and vertical stresses that developed. 
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Figure 188. MTS actuator ram used as loading device mounted to the back wall of the 
trench box.  Displacement transducer is resting atop the actuator 

 

 

 

 

Figure 189. Houston Scientific force-based load cell mounted between the actuator at the 
horizontal struts 
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     The load cell used was a Houston Scientific Force LinkTM.  (This type of force load 

cell is also referred to as a rod type load cell as it is placed in line with the load 

application).  The electronics of the load cell are 4 resistors that are arranged in a 

Thevanin Bridge configuration.  The load cell was accurate to +/- 0.1% of its range with a 

working range of measurements of +/- 445 kN in both tension and compression. The load 

cell threaded onto the actuator and sits between the load cell and the push rods that 

extend through the partition wall into the sand chamber.  Figure 190 shows how the load 

cell attached to the struts that extend through the partition wall. 

      The displacement transducer used in the tests was a TemposonicsTM magnetic slider 

displacement transducer (Figure 191).  This sensor measures absolute displacement to an 

accuracy of 0.025 mm. The transducer was mounted atop the ram and had an extension 

arm that connected to the load cell at the end of the ram.  Thus configured, it tracked the 

displacement of that load cell in a line parallel with the extension of the actuator (Figures 

191 and 192). Both the load cell and the displacement transducer were calibrated prior to 

their use in the subsequent test program.     

      The horizontal and vertical stresses developed in the sand backfill were measured 

with GeokonTM series 4100 total earth pressure cells.  The cells used were flat “ pancake”  

cells and were less than a 12.7 mm thick and 230 mm in diameter. Two types of Geokon 

series 4100 cells were used. Some of the cells were resistance type and others were 

vibrating wire (VW) cells. For the resistance type cells, data acquisition was rapid and 

occurs in milleseconds.  For the VW cells, data can only be gathered every 10 to 30 

seconds.  All earth pressure cells were rated to 1 MPa.  Figure 192 shows three of the 

earth pressure cells used in this testing program. 
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Figure 190. Load cell connecting to push rods 
  

 

 

Figure 191. Temposonics displacement transducer 
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Figure 192. Geokon total earth pressure cells 
   

Data Acquisition 

     The data from the load cell and total pressure cells were acquired, stored and 

processed by a Campbell Scientific CR1000 data-logger and its LoggerNet software. The 

CR1000 is shown in Figure 193. The CR1000 is capable of measuring or sampling 

different types of electrical signals at frequencies of 100 Hz, or less. These measurements 

include differential voltages, conditioned signals and single-ended voltages (as 

originating from a thermistor). The CR1000 stores the signals from each instrument, at 

the programmed sampling increment, in its internal memory until called for by an 

external PC running the LoggerNet software. The software displays the data in real time 

on graphs and tables, allowing the user to monitor all measurements as the test 

progresses. The CR1000 also processes the raw voltage readings from the instruments  
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Figure 193. Campbell Scientific CR1000 data collector 
 

 

into engineering units if desired. When the user provides calibration factors for each 

instrument, the data can be exported directly for interpretation.  

     Calibrations for each instrument were conducted by the University of Utah in addition 

to the factory supplied calibrations. In addition, each instrument was recalibrated after 

each experiment to verify that the data processed were accurate. The load cell and earth 

pressure cells were full-bridge circuits that returned a differential voltage, while the 

Temposonics displacement transducer was a conditioned signal that returned a 

differential voltage. The wire leads from each instrument were connected to the CR1000 

directly as shown in Figure 194. Each wire lead was assigned a particular port on the 

CR1000 by the LoggerNet software, which was dedicated for the test program to that 

particular wire from a given instrument. 
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Figure 194. CR1000 wired to instrumentation 
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 APPENDIX G 
 

 UPLIFT TEST EQUIPMENT 
 

 
Instrumentation 

     For the uplift tests, several types of measurements/recordings were taken. The total 

vertical uplift load applied to the pipe by the crane was measured by a force-tension load 

cell. The displacement of the pipe as it moved upward through the cover was measured 

with linear displacement transducers.  In addition, the vertical earth pressure within the 

backfill system was measured with pancake earth pressure cells. 

     The load cell used to measure the total uplift force was a Strainsert inline Tension 

Force Link. This type of force-tension load cell is also referred to as a shackle type load 

cell because it is placed in line with the load application of the crane cable and shackles. 

A picture of this load cell is shown in Figure 195. The Strainsert load cell is accurate to 

+/- 0.1% of its range with a working range of 712 kN in tension. The Strainsert cell 

connects to two clevises by a hole in its ends (Figure 196). Figure 197 shows the cell and 

shackles in line with the crane cable used for uplift. The electronics of the load cell are 4 

resistors that are arranged in a Thevanin Bridge configuration. The displacement 

transducers used in the tests were Celesco Brand stringpot potentiometer displacement 

transducers. The stringpot potentiometers measure voltage potential change as a string is  
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Figure 195. Strainsert tension load cell and shackles 
 

 

 

Figure 196. Strainsert tension load cell and crane cables 
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pulled out of the housing. The electronics are a 3 wire half bridge. These sensor measures 

have an accuracy of 0.25 mm.  

     The vertical earth pressure cells placed in the backfill of the trenches were measured 

with Geokon earth pressure cells. These cells were flat “ pancake”  cells that are less than a 

half an inch thick and 9 inches (229 mm) in diameter. Two types of Geokon series 4100 

earth pressure cells were used: resistance-based and vibrating wire. The primary 

difference between these types is the manner of data acquisition. For the resistance-based 

cells, data acquisition is automatic and data sampling occurs on a subsecond basis. For 

the vibrating wire cells, data can only be gathered every 10 to 30 seconds. Both types of 

earth pressure cells were all rated to 1MPa.  

 

Data Acquisition 

     The data from the instruments used in the tests were acquired, stored, and processed 

by a Campbell Scientific CR1000 data-logger and its LoggerNet software. The CR1000 

is shown in Figure 198. The CR1000 is capable of measuring different types of electric 

signals at sampling rates of 100 hertz, or higher. These measurements include  

differential voltages, conditioned signals and single ended voltages (e.g., thermistors). 

The datalogger collects data according to a measurement schedule provided by the user 

on a PC communicating with the CR1000. The CR1000 stores the signals from each 

instrument for each sampling increment in its internal memory until called for by an 

external PC running the LoggerNet software.  

     The software displays the data in real time on graphs and tables on a PC or laptop, 

allowing the user to monitor all measurements as the test progresses. The CR1000 also  
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Figure 197. Campbell Scientific CR1000 Datalogger 
 

 

 

Figure 198. CR1000 with instrumentation attached 
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processes the raw voltage readings from the instruments into engineering units if desired. 

With calibration data for each instrument supplied by the user, the data can then be 

exported for engineering purposes. The calibrations for each instrument were conducted 

by the University of Utah in addition to the factory supplied calibrations. In addition, 

each instrument was recalibrated after the field testing to verify that the data were 

processed accurately.  

     The tension load cell and earth pressure cells were full-bridge circuits that returned a 

differential voltage; the stringpot displacement transducers were 3 wire half bridge 

configurations that also returned a differential voltage. The leads from each instrument 

were connected to the CR1000 directly. Each wire lead was assigned a particular port on 

the CR1000 by the LoggerNet software, which was dedicated for the test program to that 

particular wire from a given instrument. After testing, the data from the CR1000 

datalogger were sent to the computer which was running the LoggerNet software. Two 

backup test files containing all the data were automatically made by LoggerNet. One of 

these backup files was immediately transferred to an independent data storage device as a 

secondary data backup.  
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 APPENDIX H 
 

 FLAC STRAIN SOFTENING MATERIAL MODEL 
 

          The FLAC strain softening model is based on the Mohr-Coulomb model with non-

associated shear and associated tension flow rules. The difference, however, lies in the 

possibility that the cohesion, friction, dilation and tensile strength may harden or soften 

after the onset of plastic yield (prior to yield, the properties of the material are constant 

and elastic). In the Mohr-Coulomb model, cohesion, friction, dilation and tensile strength 

are assumed to remain constant. In the strain softening constitutive model, the user can 

define the cohesion, friction and dilation as piecewise-linear functions of a hardening 

parameter measuring the plastic shear strain. A piecewise-linear softening law for the 

tensile strength can also be prescribed in terms of another hardening parameter measuring 

the plastic tensile strain. The FLAC FISH code measures the total plastic shear and 

tensile strains by incrementing the hardening parameters at each timestep and causes the 

model properties to change according to the user-defined parameters. The yield and 

potential functions, plastic flow rules and stress corrections are identical to those of the 

Mohr-Coulomb model. See Itasca (2005) for complete details on numerical 

implementation of the strain softening material model. 

      In the FLAC code, the friction, dilation, cohesion and tensile strengths are input in 

tables as functions of plastic strain. If the user desires, the properties may remain 

constant, just like in the Mohr-Coulomb material model, by defining the same properties 
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at a large range of plastic strains. In Chapter 10, tables show the properties used in FLAC 

models. The derivation of those properties from triaxial test results is contained in this 

appendix. 

     The theoretical basis of the strain softening model is shown in Figure 199. Figure 199 

is a triaxial test stress:strain curve overlain by two lines. The solid line is a representation 

of the Mohr-Coulomb material model, while the dashed is a representation of the strain 

softening material model.  

      In Figure 199, the friction angle of the material has been decreased at 6.25% plastic 

strain. In the strain softening and Mohr-Coulomb material models in Figure 199, the 

onset of yield was at 7.25% total strain. The material was softened at 13.5% total strain, 

or 6.25% plastic strain (plastic strain is defined as the total strain minus the strain at 

which yield occurred).  

     In the FLAC strain-softening material model, reduction of friction or dilation produces 

a gradual reduction in strength, while a reduction of cohesion or tension produces a 

sudden decrease in strength.  

     The derivation of the properties for use in the strain softening model is not straight-

forward (Itasca, 2005). The derivation has three steps. The first step is to conduct triaxial 

or other testing to define stress:strain curves at different stress levels. Mohr circles are 

then drawn for the failure state (onset of plastic flow), and at levels of plastic strain from 

the suite of stress:strain curves that show similar behavior at same amount of plastic 

strain. Once a set of Mohr circles is drawn, Mohr-Coulomb failure envelopes are drawn 

to determine the properties at the differing plastic strain levels. It is best to change the 

cohesive strengths as little as possible in the drawing of the Mohr-Coulomb failure  
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envelopes as a change in cohesive or tensile strength is sudden in the FLAC 

implementation of the model. In the triaxial testing done in this project, no tension or 

tensile strength was directly measured. For numerical stability, tensile strengths one order 

of magnitude less than the cohesive strengths at a given plastic strain were chosen.  

     Figure 200 shows two triaxial test stress:strain curves (in terms of principle stress 

ratio) used in the derivation of strain-softening material properties for the native sand at 

the uplift test site. Plastic strains of 0%, 9% and 15% (12, 21 and 27% total strain) are 

chosen for Mohr circles. The Mohr circles for the three strain levels are shown in Figure 

201. The confining stresses for the two tests, and all three strain levels, were held 

constant during testing. The effective confining stress for Test 1 was 77.8 kPa, while Test 

2 had an effective confining stress of 143.6 kPa. 

     In Figure 201, the larger the circle, the smaller the plastic strain level. The solid circles 

and lines represent the strength at failure. The dashed lines are for 9% and 15% plastic 

strain, respectively. The friction angle at failure is 28 degrees, while the apparent 

cohesion is 35.9 kPa. At 9% plastic strain, the friction angle is 26 degrees, while the 

apparent cohesion is 36 kPa. At 15% plastic strain, the friction angle is 21 degrees, while 

the apparent cohesion is 35 kPa. Table 25 shows that these values were used in FLAC 

and FLAC3D modeling for the Native Sand.  

      Using the strain softening material model parameters in Table 25, simple FLAC 

models of the triaxial specimens were created and run in axial compression. The stress 

and strain across the block were tracked using FISH codes. This procedure was used to 

validate the model parameters against the actual testing. 
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Three FLAC models were produced, one for the native sand found at the uplift test site, 

one for the native clay, and one for the random clayey fill used in the uplift test. In the 

FLAC models, to assist in the fit of the curves, a nonlinear modulus function was used for 

the prefailure state. The nonlinear modulus function was from Duncan et al. (1980) and 

used the initial tangent modulus found from the laboratory testing. Figures 202 to 204 

show the laboratory testing compared to FLAC models using the strain softening model. 

In Figure 202, the Mohr-Coulomb material model is also shown for comparison purposes. 

Note in Figure 204 that the Mohr-Coulomb material model run had constant stress at 

plastic strain compared to the strain softening model and the laboratory test data.  

     The modeling exercise shown in Figures 202 to 204 demonstrates for triaxial test 

models that the strain softening model in FLAC can reasonably match laboratory test data 

with numerical simulation with relative ease. This demonstration indicates that the strain 

softening model is acceptable for modeling of full scale uplift tests provided that detailed 

laboratory testing is available.  
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 APPENDIX I 
 

 FLAC BENCHMARKING RESULTS 
 

     All test data from Trautmann and O’ Rourke (1984). 
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