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Abstract

Introduction

Design ground motions are typically prescribed by smooth response spectra. Rather
than evaluate a structure for a suite of time histories that are representative of the target
spectrum in an ensemble average, engineers often prefer to use a single time history that

matches the target design spectrum.

There is an ongoing controvery if a time history with a smooth response spectrum is
realistic. After all, no observed time history ever had a smooth response spectrum,
However, I do not believe that the fine details of the response spectrum is a good test of
“realistic" ground motion. It is possible to generate a time history with a "realistic"
response spectrum that is unrealistic in terms of its ground motion. The realistic nature of
a time history should be judged in the time domain in terms of the nonstationary
character of the acceleration, velocity and displacement. For example, P and S wave
arrivals should be present, particulary at the longer periods. Small adjustments can be
made to a time history to change its response spectrum from jagged to smooth. If done
properly, the resulting time history can be "realistic". In this paper, I present a
quantitative definition of realistic timeso we can determine if the spectrum compatible

time histories are realistic or not.



Various methods have been developed to modify a reference time history so that its
response spectrum is compatible with a specified target spectrum. A review of spectral
matching methods is given by Preumont (1984). A commonly used method adjusts the
Fourier amplitude spectrum based on the ratio of the target response spectrum to the time
history response spectrum while keeping the Fourier phase of the reference time history
fixed. While this approach is straight-forward, it has two drawbacks. First, it generally
does not have good convergence properties, particularly for multiple damping spectra.
Second, it can alter the non-stationary character of the time history if the shape of the

Fourier spectrum is changed significantly.

An alternative approach for spectral matching adjusts the time history in the time
domain by adding wavelets to the reference time history. A formal optimization
procedure for this type of time domain spectral matching was first proposed by Kaul
(1978) and was extended to simultaneously match spectra at multiple damping values by
Lilhanand and Tseng (1987, 1988). While this procedure is more complicated than the
frequency domain approach, it has good convergence properties and in most cases

preserves the non-stationary character of the reference time history.

In this paper, I present a modification to the Lilhanand and Tseng algorithm that
preserves the non-stationary character of the reference ground motion for a wider range

of time histories.

Methodology

Usually, response spectra studies are only concerned with the maximum response of
the oscillator; however, for the time domain methods, the time and polarity of the peak
response must also be considered. In this paper, I will refer to the response to indicate

the oscillator time history, not just its maximum value.



Let a(t) be the reference time history and Q; be the target spectrum for frequency ;
and damping B;. Also let R; be the absolute value of the peak response, P; be the polarity
of the peak response, and t; be the time of the peak response. The difference between the

target spectrum and the computed spectrum is given by
OR; =(Qi-R)P; ey
where OR; includes the polarity of the response.

The basic method is to determine an adjustment time history, da(t), such that the

response of da(t) at time t; is equal to 8R; for all i. Let

N
da(t) = Y, by fi(t) )
j=1.

where fi(t) is a set of adjustment functions, b is the set of coefficients to be determined,

and N is the number of spectral points (frequency and damping pairs) to match. A
restriction on fj(t) is that fi(t) = O for t<0. The acceleration response of da(t) at time t; is

given by
N o0
8R; = b | £ hi(t-1) dr 3)
=1

where h;(t) is the acceleration impulse response of the oscillator for frequency w; and

 damping B;. The acceleration impulse response is given by



hi(t) =2 exp(-wifit) [ 2Bi-1) sin(@ip) - 2B,V 1-B cos(wip)] (@)

V 1-Bi
where
o= V1B 6

and hj(t) =0 for t<0. Next let cj; be the response at time t; for th ith frequency and

damping resulting from the motion fi(t):

t
Cjj = ] fj(7) hy(t;i-v) dt ©

0
(the upper limit of the intergal is t; because h;(t) =0 for t<0).

Given the spectral misfits, 5R;, and the response coefficients c;j, Eq. 7 can be solved for

the bj. In matrix notation, the solution is simply
b =C18R )

Given, the b;, the adjustment time history, 8a(t), can be computed by Eq. 2. The adjusted

time history for the first iteration is given by

ai(t) = ay(t) +yda(t) (8)



where v is a relaxation parameter (between 0 and 1) to damp the adjustments. The
algorithm is repeated using the adjusted time history until the desired spectral match is

achieved.

Selection of the ad functi

The key to the non-stationarity of the method is the selection of the adjustment

function fi(t). The selection of the form of the adjustment function, fj(t), is where the

seismological considerations enter the problem. What sort of adjustments can be made

and yet still yield realistic seismograms? In considering the forms of fj(t), we need to

also consider the numerical stability of the algorithm.

For the method to work efficiently, the timing of fj(t) should be such that the
response of fj(t) is in phase with the peak response of a(t) (Figure _). For numerical
speed, fj(t) should be chosen so that the elements of C given by the integral in Eq. 6 can
be analytically. For numerical stability, the off-diagonal terms of C should be as small as

possible.

As mentioned earlier, in the frequency domain approach, only the Fourier amplitude

spectrum is modified. This is equivalent to using
fi(t) = cos( m}t +6;) 9

where 8; is he Fourier phase of the reference time history. The adjustments are computed

from the ratio of the computed response to the target response which is equivalent to

using b=3R. The poor convergence of this method results from the simplified estimation

of b which ignores the cross-terms in the C matrix (assumes that C is the idenity matrix).



In the Lilhanand and Tseng algorithm, f(t) is given by
fit) = hi(t;-v) (10)

which is just the oscillator impulse response in reverse time order. Since h(t)=0 for t<0,

this form is one-sided as shown in Figure _.

There are several numerical aspects that make this function attractive. First, it

leads to a symmetric C matrix. Second, the abrupt stop insures that the response will

peak at time t; and not resonate to larger values at greater t for all dampings. At high

frequency, the f; has a short duration, but at long periods (T>3sec) f; has a long duration.

If only small adjustments are needed in the low frequencies, then this form works well.

From a seismological point of view, this form of the adjustment function has some
undesirable features, particularly at long periods. The adjustment is emergent and stops
abruptly. This is contrary to the behavior of strong motion time histories that generally

have a sharp initiation and gradual decay for long periods.

As will be shown later, forcing the long period adjustment early in the time history
can lead to unrealistic ground motions if a large modification to the response spectral
shape is required.

As an alternative, a tapered cosine wave can be used for the adjustment function:

fit) = COS{O);(t'tj+Atj)} ekp{-lt-tj+Atjl 0y} (1D



where At is the time delay between the maximum of fj(t) and a peak in the response of
fj(t). The o term controls the time duration of fj(t). The frequency dependence of o can
be estimated from the reference time history which helps to preserve the non-stationary
character of the reference time history. That is, if the reference time history has a short
duration at a perticular frequency, the o is selected such that the adjustment function at

that frequnecy will also have a short duration.

Numerical Aspects

Conceptually, the time domain spectral matching method appears straight-
forward; however, there are some numerical difficulties. The C matrix in Eq. 8 is
singular or near-singular for a large number of closely spaced frequencies and multiple

dampings. The numerical problem is to find a way to handle this near-singular matrix.

Lilhanand and Tseng subdivided the target spectrum into several smaller subsets
that are each about 20 to 30 frequency and damping pairs (Lilthanand, personal
communication). Each subset should sample the entire frequency range rather than using
low frequency, moderate frequency, high frequency, subgroups. For example, if 4
subsets are used, the first subset contains the 1st, 5th, 9th, ... frequencies. For each

subset, the Cy matrix can be inverted. (stable)

In addition, a singular value decomposition of Cy is computed. The small eigenvalues
are removed (ref). Initially, the smallest eigenvalues are removed until the condition

number is less than 104,

The method makes narrow band modifications to the time series. Therefore, it is
important to use a fine enough frequnecy sampling to ensure that the response spectrum

at frequencies not matched will remain smooth. Based on the bandwidth of the oscillator



response, about 30 frequencies per decade (equally spaced on the log frequency axis) is

sufficient.
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User Guide for Spectral Matching Program RSPMATCH (version 2.2)

Target Spectrum File Format

Line 1: Comment Line (Not used)

Line 2:

Line 3:

Line 4 - ...

nFreq, nDamp
nFreq = Number of frequencies in target.
nDamp = Number of damping values in target.

beta(i),i=1,nDamp

beta(i) = Damping value in fraction of critical (0.05 = 5%)

freq, minTime, Q(i),i=1,nDamp

freq = frequency (Hz)

minTime = minimum time (seconds) for the adjustment time
history.

The main use of this parameter is for controlling the
timing of the long period waves. If unsure, set this
parameter to zero.
Q@) = target spectral acceleration (in g) for the ith damping
~ value

One line is needed for each frequency.

Reference Accelerogram File Format

Line 1:

Line 2:

Line3-...

Title

npts, dt

npts = number of samples
dt = time step (sec)

acc(i), acc(i+1), ...

acc = acceleration in g.
If the accelerogram is not in g, you can use the scaling
parameter in the input run parameters.



Input Run Parameters

Line 1: maxIter
Line 2: tol

Line 3: gamma
Line 4: iModel
Line 5: al, a2, f1, 2
Line 6: iScale =

maximum number of iterations. Typically set to 20.

]

convergence tolarance for maximum deviation from
target (in fraction)
(e.g. tol=0.05 for 5% maximum deviation)

adjustment scale factor.

This sets the fraction of the adjustment that is made at
each iteration. Used to help stabilize convergence but
slows the convergence.

Recommended default value of 1.0

flag for the model for the functional form of the
adjustment time history.

iModel = 1 oscillator impulse response in
reverse time order .
iModel = 6 tapered cosine wave

Recommended value: model 6 for initial adjustments,
model 1 for final adjustments

= parameters for frequency dependence of the taper of
the adjustment time history.

The taper is given by function o(f)
Model: a(f)=al*f

forf<f1

off) = (al + (f-f1) * (a2-al)/(f2-f1) ) * f
forfl<f<f2

off)=a2*f
for f> 2

Recommended values: 1.25, 0.25, 1.0, 4.0

scaling options

iScale = 0 no scaling

iScale = 1 scale time history to target PGA
initially and after each iteration

iScale = 2 scale inital time history to target
PGA, but not after each
iteration.

Recommended default: iScale=2



Line 7;

Line 8:

Line 9:

Line 10:

Line 11:

Line 12:

Line 13:

Line 14:

Line 15:

Line 16:

dtFlag =

evmin

groupSize

maxFreq

interpolation factor for reference time history.

1

fcl, fc2, nPole

iModPGA

Interpolate to 1/dtFlag of the input time step.

The nyquist freq should be about twice the maximum
frequency

For example, a maximum freq of 50 Hz, interpolate to
200 samples per sec.

minimum normalized eigenvalue used in singular
value decomposition. -

This is a control on the convergence. A smaller value
gives more rapid, but less stable convergence.
Recommended value: 1.0e-4

number of spectral values to use in a subgroup.
This is a control on convergence. A smaller value
gives more rapid, but less stable convergence.
Recommended value: 25

maximum frequency (Hz) for energy content of the
accelerogram.

(e.g. frequency at which the spectral acceleration
becomes constant.

Parameters of initial bandpass filter

fcl = corner frequency of high-pass filter in Hz

fc2 = corner frequency of low-pass filter in Hz
nPole = number of poles for the Butterworth filter
(same applied to both high-pass and low-pass)

If fc1=0, then a high-pass filter is not applied

If £c2=0, then a low-pass filter is not applied

flag for modifing the peak acceleration

If used, a triangle adjustment function is applied at the
time of the PGA. This function can be used to help
converge to the PGA. For initial runs, it should not be
used.

iModPga=0,  No extra modification for the PGA
iModPga=1,  Pga modified after each iteration

filename of target spectum

filename of reference time history.

filename of output time history.

filename of output spectrum.



