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ABSTRACT 1 
Critical infrastructure systems have received significant attention over the past several decades. 2 
Transportation system is among many critical lifelines that communities or any urban areas are 3 
dependent on. Disruption analysis of transportation infrastructure thus is important to ensure the 4 
prevention, preparedness, response and recovery from any risks. In the context of transportation 5 
network, identifying critical links under disaster disruption scenario can help guide pre-disaster 6 
preparation and post-disaster recovery efforts. Previous studies for disaster-based transportation 7 
network analysis were not carried out within a probabilistic context, owing to analysis methods 8 
that either look at single link impact or focus on specific disruption scenario. We advance existing 9 
knowledge by presenting a probabilistic approach to simulate various disruption scenarios and 10 
identify the most critical links within the network. Our method takes advantage of Monte Carlo 11 
simulation, network-wide demand modeling, and regression analysis to address the probabilistic 12 
nature of disaster effect and capture the joint impact of links failures. Applying to the Salt Lake 13 
County transportation network in the State of Utah, our analysis effectively categorizes the links 14 
based on their vulnerability and criticality for disaster prevention and preparedness. The proposed 15 
method can be easily transferable to different transportation networks regardless of scale, 16 
topology, and the type of the disasters that might impose disruption.  17 
 18 
 19 
 20 
 21 
KEYWORDS: Network-disruption; Monte Carlo; Linear regression; Simulation; Critical 22 
infrastructure  23 
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INTRODUCTION  1 
Critical infrastructure systems include all the basic organizational structures and physical facilities 2 
required for the day-to-day operation of society. Transportation infrastructure (e.g. roads, bridges, 3 
and rails), among many other critical infrastructures, is subject to disturbances from natural, 4 
technological and malicious sources (1–5). Such disruptions to the system, caused by any source, 5 
are costly. For example, the recent collapse of the Interstate 10 “Tex-Wash” bridge in California, 6 
which was caused by a combination of structural deficiencies and severe flooding (6), resulted in 7 
an $8 million cost to replace the bridge and an estimated $1.5 million of unexpected costs to 8 
travelers and businesses and 19,000 wasted hours for truck drivers, per day, when it was completed 9 
closed (7).  10 

In an effort to mitigate the infrastructure disruptions and economic losses, these systems should 11 
be designed with a mechanism for resiliency and robustness, providing the ability through which 12 
to resist potential risks, absorb the initial damage, and recover to a stable condition (8). For 13 
transportation infrastructure, where resiliency is concerned, many steps have been taken to ensure 14 
the continuity of the system, from retrofitting bridges, to developing priority road maps (9, 10). 15 
For most regions/communities, the road system is the most important transportation asset, 16 
supporting a wide variety of modes, including auto, bus and bicycle. Road networks also serve as 17 
the primary infrastructure for providing access to important lifelines in a community, including 18 
emergency services, as well as healthcare and education. During extreme events, transportation 19 
networks can hinder the ability of restoration equipment to reach areas requiring restoration (11, 20 
12). This often manifests as lengthy detours. Problems also arise for neighborhoods that rely upon 21 
a single connection (e.g. bridge) to the transportation network. When that connection is damaged, 22 
neighborhoods can become completely isolated from the remainder of the grid.  23 

A myriad of studies have been conducted to model the transportation network disruption of 24 
various scales and identify the critical components within the network (13–18). The main purpose 25 
of this scientific corpus is to develop techniques that can effectively model the impact of disasters 26 
through performance evaluations (i.e. travel time, accessibility) to minimize risk and 27 
vulnerabilities of the network. General approaches include empirical methods such as scenario-28 
based, simulation, and optimization techniques. One common interests of these studies (13–16, 29 
18) is to identify the individual impact of roadway links in terms of network performance (e.g. 30 
average travel time) upon disruption. This is usually achieved by removing one vulnerable link at 31 
a time and evaluate the network performance. The drawback for such analysis is the lack of 32 
consideration on the local hazard probability. That is, the influence of the likelihood of link damage 33 
and the probability of combined link failure is not thoroughly considered. As a result, a link with 34 
low probability of hazard exposure but geographically “important” might be considered as a 35 
critical link, while in fact, it may not be of high priority for pre-disaster preparation or post-disaster 36 
cleanup. Furthermore, overlooking the joint impact of multiple link failures might undermine the 37 
important role that certain links serve in terms of connectivity even though they might carry 38 
marginal traffic.  39 

The contribution of this paper is thus twofold. First, this study captures the link damage 40 
probability by generating multiple real-world scenarios (instead of one) through a combined Monte 41 
Carlo simulation and network simulation. The generated scenarios ensure the impacts of link 42 
damage probability to be thoroughly considered and the network-wide transportation performance 43 
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to be fully captured. Second, the analytical framework, developed on the basis of the simulation 1 
results and regression analysis, allows the vulnerable links to be identified to further guide pre-2 
disaster retrofit efforts.  3 

Previous studies on network disruption analysis will be discussed in the following section. We 4 
will argue that the empirical methods for disaster based transportation network analysis has not 5 
been thoroughly conducted within a probabilistic context, owing to analysis methods that either 6 
look at single link impact or focus on specific disruption scenario. Our proposed method is 7 
presented, which takes advantage of Monte Carlo simulation and regression modeling to address 8 
the probabilistic nature of disaster and capture the joint impact of links failures. The method is 9 
applied to the Salt Lake City transportation network to showcase its effectiveness. Implications 10 
and results are discussed at the end.  11 

 12 
LITERATURE REVIEW  13 
The first network disruption studies aimed to evaluate the negative impact of a disruption scenario 14 
on transportation network performance. Asakura used travel time reliability to evaluate the impact 15 
of deteriorated roads on capacity degradation. Travel time reliability is defined as a function of the 16 
ratio of travel time in degraded and non-degraded condition (19). Giuliano and Golob assessed the 17 
impact of Northridge earthquake on travel patterns in two damaged corridors. Their results 18 
revealed that the most important change in travel patterns in post-disaster condition is the 19 
flexibility of travelers in choosing available alternatives. Based on their analysis, most of travelers 20 
adjust to the new condition by changing routes, travel time schedules, and avoiding trips in the 21 
damaged areas (3). Chang and Nojima utilized Network coverage and transport accessibility to 22 
evaluate the impact of earthquake on rail and highway transportation network performance in 23 
Kobe, Japan. They reported that both transportation networks experienced extensive damage in 24 
the disaster but service restoration proceeded more rapidly for rail network (5). Disruption 25 
scenarios used in these studies is based on the level of damage to different transportation network 26 
components. Various approaches were utilized to model the impact of disasters in term of different 27 
performance measures. Scenario-based assessment (3, 5, 13, 14, 16, 18, 20), simulation-based 28 
assessment (15, 21, 22), and optimization-based assessment (17, 23, 24) are among the most 29 
common approaches used for network disruption assessment.  30 

Scenario-based approaches specify a particular scenario or small set of scenarios and evaluate 31 
their impact on network performance. The probability of scenario’s occurrence is not considered 32 
in this approach. Simulation-based approaches generate a large number of scenarios for 33 
assessment. Scenarios are generated based on damage probability of vulnerable components. 34 
Optimization-based approaches seek to identify the worst case scenario which will result in most 35 
adverse impact on network performance (12, 25). 36 

A vast majority of network disruption studies concentrate on evaluation of network capability 37 
to deal with disaster consequences (12). A few studies tried to develop strategies for managing 38 
network in disaster condition. A common concern among these studies is to identify critical 39 
components of transportation network and prioritize them for pre-disaster preparation and post-40 
disaster recovery effort (13-15, 26, 27). For pre-disaster condition the critical components ranking 41 
can help decision makers to prioritize component for retrofitting investments. In post-disaster 42 



Haghighi, Fayyaz, Liu and Bartlett   4 

condition, the components ranking can be used to allocate available resources to competing 1 
recovery projects.    2 

A comprehensive review of network disruption literatures reveals that various measures were 3 
utilized to quantify the impact of network disruption on individuals, community, and economy 4 
(12). Network robustness (13, 14, 28), resiliency (23, 24, 29), accessibility (5, 18, 30),  economic 5 
loss (26, 31, 32), reliability (15, 21, 22), total travel time (20, 27), risk (5, 33, 34), and vulnerability 6 
(16, 17, 30) are some of the performance measures used by past studies. Various definitions were 7 
introduced for some of these performance measures. Robustness measures the ability of network 8 
to withstand disturbances and maintain some level of functionality after disaster occurrence. 9 
Reliability is the probability that a system preserves its functionality after a disruption event. 10 
Resiliency can be defined as the ability of any network to resist and absorb the impact of 11 
disruptions. Risk is a term used to represent both likelihood and consequence of any disruption 12 
event. Vulnerability considers the potential consequences of a disruption event but does not 13 
account for disaster event probability (12).  14 

Majority of past studies assess consequences of network disruption and links importance by 15 
removing each link from the network one at a time and evaluating their respective effects on 16 
network performance (13–16, 18). There are two major drawbacks to this approach. First, such 17 
method does not consider the disruption probability of each link, so the link importance is only 18 
dependent on the impact of link disruption on network performance measures. Second, removing 19 
an individual link from a network is an unrealistic simulation scenario since after a disaster, it’s 20 
more likely that several links fail or suffer extensive damage together (16). Other approaches 21 
employ optimization model to identify the worst case scenario and links with highest priority for 22 
improvement (17). However, the link importance can change at different disruption levels. 23 
Therefore, it’s not reasonable to determine links’ importance based on a specific disruption 24 
scenario.   25 

 26 
METHODOLOGY 27 
To facilitate the network-wide disruption analysis, this study is decomposed into two major 28 
components. First, multiple real-world scenarios accommodating various damage levels are 29 
generated. The level of damage to the vulnerable links (a.k.a. bridges) in each scenario is 30 
determined by performing Monte Carlo simulation based on bridge fragility curves (35). The 31 
bridges capacity reduction at each scenario is then determined. The probability resulted from 32 
Monte Carlo simulation in each scenario is fed into a computer simulation for network-wide traffic 33 
assignment modeling, and for assessing the network performance. Second, regression modeling is 34 
used to associate vulnerable links (a.k.a. bridges) capacity reduction to network travel time 35 
increase. Note that each scenario is treated as one observation sample. The estimated parameters 36 
reflects the impact of each vulnerable link (a.k.a. bridges) to the network. 37 

It is important to mention that this study focuses on the types of disasters that are not life 38 
threatening yet would cause damage and prevent the normal operation of critical infrastructure 39 
system (i.e. transportation network). Under such assumption, we expect that people would resume 40 
their daily activity pattern within a short time period, and thus negligible changes would occur in 41 
travel demand. Therefore, we model “business-as-usual” traffic flows and examine how normal 42 
demand will be accommodated post disaster.  43 
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Disruption Scenarios Simulation 1 
In reality, the exact level of damage that a disaster might produce to the transportation network 2 
remains unknown until it actually occurs. Depending on the nature of a disaster and the link 3 
resistance (ability to withstand a disaster and maintain its functionality), multiple extents of 4 
damage could happen post disasters.  On the other hand, the importance of each individual link is 5 
a function of its own characteristics and the damage condition of other links. By modeling the 6 
varying combinations of damaged links in each scenario, it is expected that links’ importance 7 
would change accordingly. In network disruption analysis, it might not be reasonable to determine 8 
the importance of a link via a single scenario (e.g. the worst case scenario).  Instead, for disaster 9 
preparation or post disaster recovery purposes, the modeling effort should be conducted on the 10 
basis of all possible scenarios. To enable such analysis, first, Monte Carlo simulation is conducted 11 
to populate the possible scenarios by estimating the probabilistic damage extent of each link. 12 
Monte Carlo simulation is a sampling procedure used to propagate uncertainties in model inputs 13 
into uncertainties in model outputs (36).   14 

In this study, we focus on the potential link damage induced by earthquake in Salt Lake County, 15 
Utah. We estimated potential damage caused by lateral spread ground deformation to roadways 16 
and bridges. Lateral spread displacement map and lateral spread fragility curves were used to 17 
estimate potential damage. Fragility curves specify the damage states based on the estimates of 18 
lateral spread. For each bridge, lateral spread displacement is estimated based on collected 19 
boreholes at bridge location. Lateral spread displacement is then used to determine damage 20 
probability on fragility curves. Since there is uncertainty in lateral spread displacement, Monte 21 
Carlo simulation is utilized to propagate these uncertainties into potential outcomes (bridge 22 
damage states). Interested readers can refer to Moriarty (37) for further details on the estimation 23 
of lateral spread and associated damage. Five possible damage states were considered for each 24 
bridge including collapse, extensive, moderate, slight, and none damages. Various damage states 25 
cause different level of capacity and free flow speed reductions which negatively affect the 26 
transportation network performance. Capacity and free flow speed reductions associated with each 27 
damage state were estimated from the study conducted by Bartlett et al. (38) and illustrated in 28 
Table 1. 29 

 30 
TABLE 1 Road Capacity and Free Flow Speeds due to Damages 31 

Link Damage 
State 

Capacity 
Change Rate 

Free Flow Speed 
Change Rate 

None 100% 100% 
Slight 100% 75% 

Moderate 75% 50% 
Extensive 50% 50% 
Collapse 0% 0% 

 32 
The probability resulted from Monte Carlo simulation is fed into a computer simulation for 33 

network-wide traffic assignment. Network Explorer for Traffic Analysis (NeXTA), an open-34 
source dynamic traffic assignment tool, is utilized in our study for traffic flow modeling. NeXTA 35 
can be used for large-scale transportation simulation. It enables planners and engineers to assess 36 
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effect of various strategies or investments on traffic operation. Modeling impact of work zones, 1 
freeways, and tolling facilities are some of the important applications of this software. NeXTA 2 
outputs are set of links volume and network average travel time calculated for each disruption 3 
scenario. Figure 1 shows the pseudo code of disruption scenarios generation and traffic simulation. 4 
The code consists of two inner loops nested in scenario. In each scenario iteration, the first loop 5 
generates the real-world scenario of links capacity reduction. The second loop utilizes the results 6 
of the scenario generation to calculate the capacity reduction impacts on total network travel time. 7 
The output will be K scenarios, containing the damage states of each link and average network 8 
travel time at each scenario. 9 

 10 

 11 
Figure 1 Pseudo code for disruption scenario simulation. 12 

 13 
Modeling Network-wide Impact of Links Damage 14 
It is critical to benchmark and gain a thorough understanding of how transportation systems (i.e. 15 
the links) are used under various disruption scenarios. Establishing knowledge about critical 16 
transportation links is important for two main reasons. First, the critical links identified can be 17 
given high priority for pre-disaster preparation and post-disaster cleanup. Second, it will help 18 
identify the potential communities vulnerable to disruption and network isolation when critical 19 
links are severed. We pursue a handful of possible disruption scenarios by means of computer 20 
simulation. The effort can help unveil how insidious certain links can be.  21 

The Monte Carlo simulation ensures that for each scenario, the probability of link damage is 22 
estimated. The computer simulation that the result feeds into, enables the failure frequency of the 23 
entire roadway network to be evaluated for identifying the most critical links. As mentioned 24 
earlier, the computer simulation will generate for each scenario the network Average Travel Time 25 
(ATT). Average Travel Time Increase (ATTI) is further determined by comparing the simulation 26 
output with the average travel time of base condition (no damage to the network). ATTI is 27 
measured as: 28 

௜ܫܶܶܣ  ൌ ܶܣ ௜ܶ െ ܶܣ ௕ܶ௔௦௘ (1)
   

where  ܫܶܶܣ௜ is ATTI for  ݅௧௛ scenario, ܶܣ ௜ܶ is ATT for  ݅௧௛ scenario, and ܶܣ ௕ܶ௔௦௘ is ATT for 29 
base condition of the network (network works at full capacity). Regression analysis is performed 30 



Haghighi, Fayyaz, Liu and Bartlett   7 

to quantify the impact of links’ capacity reductions (damage state) on network ATTI. The first 1 
assumption of the classic linear regression model specifies that the functional form of the 2 
relationship to be estimated is linear, however this assumption can be violated when linear 3 
functional form is used as an approximation to a non-linear functional form. Network disruption 4 
modeling is an example of such case since the functional form of the relationship between link 5 
capacity reduction and ATTI is unknown (39). Following equation represents ATTI model as a 6 
function of vulnerable links’ capacity reductions: 7 

௜ܫܶܶܣ  ൌ ଵߚ ଵܺ௜ ൅ ଶܺଶ௜ߚ ൅ ⋯൅ ௞ܺ௞௜ߚ ൅ ௡ܺ௡௜ߚ ൅ ௜ (2)ߝ
   

where ଵܺ௜ , ܺଶ௜, … , ܺ௡௜ are the capacity reductions for links’ 1, 2,…, n in the ݅௧௛ scenario, and ߝ௜ is 8 
error term. ߚଵ, ,ଶߚ … ,  ௡ are the coefficients associated with the independent variables Xi, which 9ߚ
also indicates the impact of the specific links’ capacity reduction on ATTI.  10 
 11 
APPLICATION  12 

 13 
Study Network 14 
The Salt Lake County’s transportation network in the State of Utah is used to demonstrate our 15 
analytical method.  The study network is prone to liquefaction-induced ground failure due to 16 
seismic events. The likelihood of earthquake hazard in the region increases the probability of 17 
lateral spread deformation. Lateral spread deformation is not generally life threatening; however, 18 
it can cause serious damage to transportation infrastructures, particularly bridges. The 1964 Alaska 19 
earthquake is an example. 266 bridges and embankments were damaged to varying extent due to 20 
seismic shaking, lateral displacement, fractures, etc. just to name a few, resulting in a total of $80 21 
million of repair the Alaska Railroad and Highway (1, 2).  22 

For the purpose of this study, all the bridges in the study network are geocoded and treated as 23 
potential links that could suffer substantial damage after an earthquake. Zero damage probability 24 
is considered for other links. Note that the damage type associated with liquefaction event is not 25 
life threatening, it is therefore expected that most of people will resume their daily activities within 26 
a short period of time and the travel demand pattern would not vary significantly. The simulated 27 
post-disaster scenarios thus assume that the network will reach a new user equilibrium with the 28 
damaged links and no transient state is considered.   29 

Salt Lake County transportation network is modeled in NeXTA (40). The studied 30 
transportation network consists of 13,951 nodes, 27,981 links, 2,313 zones (TAZs), and 574 31 
bridges (links). Figure 2 shows all the bridges located in the study area. We used PM peak-hour 32 
origin-destination demand matrix for year 2015 obtained from Wasatch Front Reginal Council 33 
(WFRC). Ten iterations are performed to reach the user equilibrium condition for each scenario. 34 
400 scenarios accommodating various probabilities of damaged bridges and capacity reductions 35 
are created via Monte Carlo simulation. It feeds into the NexTA simulation model to determine 36 
the average network time and link volume.  37 
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 1 
FIGURE 2 Vulnerable Links Located in Salt Lake County, Utah. 2 

 3 
RESULTS 4 
We focus on modeling the impact of M7.0 earthquake scenario event which is commonly used for 5 
seismic design and planning purposes (37). Table 2 shows the simulation results. Each row in this 6 
table represents a scenario populated with estimated link capacity reduction and the resulted 7 
network ATTI.  Of the 400 simulations, average network travel time increase is approximately 8.9 8 
minutes/vehicle, a 70% more increase in travel time of the base scenario (12.5151 minutes/vehicle) 9 
where no link capacity reduction occurs. It is thus confirmed that travelers would encounter 10 
significant travel delay upon such earthquake events.   11 
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TABLE 2 Simulation Results 1 

Scenario 
Proportion of Links’ Capacity Reductions 

L1 L2 L3 L4 L5 L6 … L573 L574 
ATTI 
(min) 

1 1 1 0 1 1 0 … 1 0 8.6043 
2 1 0 1 1 0 0 … 0 0 9.7458 
3 1 1 0 0 1 0 … 0 0 8.6729 
4 0 0 1 0 0 0 … 0 0 8.3941 
5 1 1 1 0 0 0 … 0 0 7.6269 
6 0.5 1 0 0 0 1 … 0.5 0 7.4727 
7 0.5 1 0 0 0.25 0 … 1 0 6.9271 
8 0 0 0 0.25 0 0 … 0 0.5 7.6236 
9 0.5 0 0 0 0.5 0 … 0 0 7.0431 

10 0 0 0 1 0 1 … 0 0 8.2428 
11 1 1 1 1 1 1 … 0 0 11.8508 
12 1 1 0 1 0 1 … 0 0 10.1234 
13 0 1 0 0 1 1 … 0 0 8.2439 
14 0 0 0 0 1 1 … 0 0 8.8691 
15 0 1 1 1 1 0 … 1 1 8.5232 
16 0 0 0 0 1 0 … 0 0 7.1552 
17 0 0 1 0 0 0 … 0 1 8.3316 
18 1 0 1 0 0 0 … 0 0 8.9537 
19 1 0 1 0 1 0 … 0 1 7.0527 
20 1 0 0 0 0 0 … 0 0 7.6702 
… … … … … … … … … … … 
400 1 1 1 0 1 0 … 0 0 10.0236 

 2 
Figure 3 shows the ATTI against capacity disruption level. Capacity disruption level is defined 3 

as the sum of all links’ capacity reduction ratio (as shown in Table 2 for each scenario). Although 4 
with a general ascending pattern, the highest network ATTI does not occur at the highest disruption 5 
level. This indicates the possibility that a combination of bridges disruption (though less severe) 6 
might have more profound impact on the network travel time. Regression analysis is further 7 
conducted to identify those links or a combination of links. The optimal model is identified after 8 
eliminating the insignificant variables and unrealistic coefficients.  9 

 10 

 11 
FIGURE 3 Change in Average Network Travel Time as the Capacity Disruption Level 12 
Changes. 13 
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Table 3 shows the result of the optimal linear regression model. All independent variables are 1 
statistically significant at 80% confidence level and the model shows excellent goodness-of-fit.  2 
 3 

TABLE 3 Final Model Specification 4 

R-squared = 0.99  

Adjusted R-squared =  0.92  

Link ID Coefficient 
Std. 

Error 
P> |t| Link ID Coefficient 

Std. 
Error 

P> |t| 

L332  0.546  0.091 0 L554 0.218 0.089  0.015
L232  0.503  0.094 0 L218 0.218 0.091  0.017
L185  0.488  0.095 0 L461 0.213 0.102  0.038
L428  0.468  0.098 0 L517 0.209 0.096  0.03
L54  0.392  0.101 0 L178 0.203 0.090  0.025
L211  0.384  0.103 0 L231 0.203 0.090  0.024
L204  0.382  0.091 0 L466 0.202 0.094  0.033
L390  0.378  0.105 0 L249 0.200 0.087  0.022
L533  0.372  0.091 0 L569 0.197 0.098  0.045
L516  0.363  0.093 0 L364 0.188 0.089  0.035
L92  0.358  0.091 0 L134 0.187 0.092  0.043
L31  0.354  0.095 0 L565 0.185 0.093  0.047
L56  0.345  0.097 0 L351 0.184 0.102  0.072
L562  0.341  0.091 0 L395 0.181 0.088  0.041
L214  0.335  0.091 0 L200 0.179 0.086  0.038
L427  0.329  0.093 0 L557 0.179 0.090  0.047
L41  0.323  0.111 0.004 L372 0.179 0.089  0.046
L403  0.306  0.098 0.002 L228 0.175 0.095  0.067
L21  0.299  0.092 0.001 L105 0.175 0.092  0.058
L52  0.295  0.091 0.001 L154 0.174 0.097  0.073
L267  0.293  0.090 0.001 L280 0.174 0.099  0.079
L449  0.292  0.089 0.001 L62 0.173 0.089  0.052
L509  0.283  0.093 0.003 L320 0.171 0.092  0.064
L518  0.280  0.100 0.005 L510 0.167 0.091  0.066
L152  0.276  0.087 0.002 L514 0.167 0.090  0.064
L502  0.272  0.091 0.003 L522 0.167 0.091  0.067
L29  0.271  0.097 0.006 L39 0.165 0.095  0.083
L530  0.264  0.089 0.003 L187 0.157 0.089  0.08
L28  0.257  0.090 0.004 L376 0.157 0.088  0.075
L197  0.256  0.104 0.015 L130 0.156 0.089  0.082
L513  0.254  0.091 0.005 L53 0.148 0.090  0.101
L233  0.249  0.089 0.005 L72 0.142 0.091  0.122
L173  0.248  0.086 0.004 L397 0.139 0.087  0.113
L55  0.240  0.101 0.018 L195 0.136 0.089  0.126
L198  0.239  0.096 0.013 L369 0.136 0.092  0.141
L325  0.236  0.091 0.01 L420 0.135 0.089  0.128
L244  0.234  0.086 0.007 L186 0.132 0.093  0.156
L174  0.229  0.089 0.011 L473 0.132 0.093  0.155
L373  0.226  0.090 0.013 L86 0.132 0.094  0.165
L501  0.226  0.092 0.015 L365 0.130 0.093  0.162
L230  0.220  0.090 0.015 L153 0.130 0.099  0.193
L77  0.219  0.092 0.017  
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Note that the capacity reductions of 83 links have substantial impact on total network travel time. 1 
The larger the estimated coefficient of each variable (bridge), the higher impact of that link on 2 
networks ATTI. 3 

In the following analysis, we are distinguishing the links between vulnerable, critical, and 4 
congested. Vulnerable links, as mentioned in the Methodology section, are all the bridges within 5 
Salt Lake County that are susceptible to liquefaction-induced damage. The most vulnerable links 6 
represent links where their probability of experiencing severe damages (collapse and extensive 7 
damages) exceeds 30 percent amongst the 400 scenarios generated. Most critical links refer to the 8 
top 20 links whose coefficients are among the highest in the regression model. Most congested 9 
links are those that their v/c ratio (volume to capacity ratio) exceeds 0.8 in the base condition. 10 

Table 4 shows the top 20 most critical links across Salt Lake County transportation network. 11 
The rank shows in descending order from the most to least critical. As shown in the column of 12 
Base Condition Volume, these links do not necessarily carry large traffic volume. However, few 13 
alternative routes are available in case disruption occurs to those links. As illustrated in Figure 4, 14 
some of the most critical links are located on reliable alternative routes (reliable routes are those 15 
consisting of minimum number of links with severe damage probability) that carry detouring 16 
traffic.  17 

 18 
TABLE 4 Ranking of the Most Critical Bridges across Salt Lake County Transportation 19 
Network 20 

Ranking  Link ID  Road Name  Link Type 
Length 
(mi) 

Capacity 
(vph) 

No. 
of 

Lanes 

Speed 
Limit 
(mph) 

Base 
Condition 

Volume (vph) 

1  L332  SR‐201  Freeway/lower capacity  0.29  5800  3  67  6000

2  L232  Meadow Br  Minor arterial  0.37  1500  2  31  1250

3  L185  CD Road  Freeway/system loop ramp  0.25  1800  1  40  800

4  L428  I‐15  Freeway/lower capacity  0.25  5800  3  67  6820

5  L54  4100 South  Principle arterial  0.07  1700  2  31  1030

6  L211  CD Road  Freeway/high speed CD  0.68  3500  2  55  810

7  L204  9000 South  Principle arterial  0.63  1700  2  32  1310

8  L390  I‐215  Freeway/higher capacity  0.5  6700  3  67  4570

9  L533  I‐15  Freeway/higher capacity  0.26  8000  4  67  2600

10  L516  Creek Rd  Major collector  0.12  700  1  30  300

11  L92  3300 South  Principle arterial  0.29  2400  3  32  1300

12  L31  CD Road  Freeway/high speed CD  0.66  3500  2  55  580

13  L56  500 West  Major collector  0.5  600  1  24  80

14  L562  I‐15  Freeway/higher capacity  0.41  6400  3  67  2600

15  L214  South Jordan  Minor arterial  0.39  1700  2  27  1840

16  L427  I‐215  Freeway/higher capacity  0.27  4900  2  67  3770

17  L41  5600 West  Minor arterial  0.16  1600  2  36  1940

18  L403  I‐215  Freeway/higher capacity  0.6  8400  4  67  7550

19  L21  North Tem  Minor arterial  0.48  2200  3  31  600

20  L52  2100 South  Minor arterial  0.51  1500  2  31  10
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 1 
FIGURE 4 Map of Top 20 Most Critical Bridges across Salt Lake County Transportation 2 
Network. 3 

 4 
As an example, consider the section of I-80 illustrated in Figure 5. In case of I-80 closure, 5 

North Temple Street can be used as an alternative route.  There are three vulnerable links on North 6 
Temple Street and several vulnerable links on I-80. The high number of vulnerable links on I-80 7 
increase its closure probability. Fortification of an individual link along I-80 might not improve 8 
the resilience of I-80 given that the failure of other links marked in Figure 5 might as well prevent 9 
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its functionality. Consequently, in order to guarantee the operation of I-80 several links need to be 1 
fortified while only three links are required to keep North Temple Street functional.  2 

The linear regression can identify this by following explanation. Assume that failure of both I-3 
80 and North Temple Street together will increase the ATT (ATTI) by x minutes, then impact of 4 
each bridge failure in I-80 and North Temple Street simply estimating will be x/15 and x/3 5 
respectively. Thus the North Temple Street links will rank higher in criticality. 6 

 7 

 8 
Figure 5 Map of Most Critical Bridges Located on North Temple Street. 9 

 10 
Results Interpretation  11 
Figure 6 depicts the map of critical links identified by linear regression model. As shown in this 12 
figure, almost for all of the critical bridges there is a high probability of severe damages and most 13 
of them have experienced congestion in base condition. Four different link categories are specified 14 
to interpret the results of this study. Categories are defined based on the similar characteristics that 15 
set of links share together. The first category includes links that connect main freeways (I-15, I-16 
80, and I-215) and provide access to the downtown area. The second category consists of set of 17 
links that provide connectivity in the network. Network Connectivity refers to how well connected 18 
the network is regarding the number of links and alternative routes connecting network nodes. The 19 
high damage probability of all the links in the set will affect the connectivity between parts of 20 
network in most of disruption scenarios. Third category consists of freeway links that carry large 21 
traffic volume but are not identified as critical links. The last category are links that are located on 22 
routes which are providing reliable alternative routes for freeways. These four categories are 23 
discussed in detail as follows. 24 

N. Temple

I80 
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 1 
FIGURE 6 Map of Critical Bridges across Salt Lake County Transportation network. 2 

 3 
Category I 4 
Figure 7 illustrates the first category of critical bridges. Most of these links are located over the 5 
interchanges that connect main freeways and provide access from/ to the downtown area. These 6 
links also carry a large traffic volume and in the case of their disruption there are a few alternative 7 
routes that can accommodate this demand. High vulnerability of exit and entering ramps in this 8 
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part of the network restrains available alternative routes. Furthermore, the high vulnerability of 1 
exit and entrance ramp affects the large portion of freeways functionality.  2 
 3 

 4 
FIGURE 7 Category I of Critical Bridges in Salt Lake County Transportation Network 5 
(highligted in box). 6 

 7 
For instance, the closure of one or two links can paralyze the entire freeway. Under these 8 
circumstances, travelers have to exit freeway and take local roads which have fewer speed limit 9 
and capacity. Due to its close vicinity to the downtown area, the alternative routes are already 10 
congested which will result in extensive additional load on the already congested routes. 11 
Consequently, a large portion of travelers will experience more delay compared to the base 12 
condition and this will result in substantial increase in network total travel time. Therefore, the 13 
criticality of this category can be explained by their high damage probability, large traffic volume, 14 
and unavailability of reliable alternative routes.  15 
 16 
Category II 17 
The second category consists of sets of links that provide the connectivity between different parts 18 
of the network. Figure 8 exhibits this category of links. Failure of these links in each disruption 19 
scenario will reduce the connectivity and increase travel time between less connected communities 20 
of the network. In case of such failure, travelers have to take longer alternative routes. Most of the 21 
available alternative routes are either congested or do not have enough capacity to carry detouring 22 
traffic. Movement of detouring traffic toward these alternative routes causes the accelerated 23 
deterioration of these routes. Consequently both regular users on their usual shortest path and the 24 
detouring traffic would experience more delay. It is worth mentioning that the majority of past 25 
studies are unable to identify this category as critical links since they mostly focus on the individual 26 
impact of each link removal on network performance and most of these bridges do not carry a 27 

I215 

I15

I80 
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large traffic volume in normal condition. Therefore, their individual removal from the network do 1 
not affect network total travel time significantly but the set failure have serious impact on network 2 
total travel time. Considering the combination of bridge failure enables us to identify these bridges 3 
as critical. 4 
 5 

 6 
FIGURE 8 Category II of Critical Bridges in Salt Lake County Transportation Network 7 
(highligted in boxes). 8 
 9 
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Category III 1 
As shown in Figure 9, there are also other links that have high damage probability and carry large 2 
traffic volume but they are not identified as critical links. In case of these links disruption, there 3 
are reliable alternative routes that can accommodate detouring traffic volume. Availability of 4 
reliable alternative routes substantially attenuates impact of these links’ disruption on ATTI. 5 
However, the past studies’ method may give higher importance to these links compared to the 6 
second category discussed above. That’s because previous studies do not consider the combination 7 
of bridges disruption.  8 

 9 
Category IV 10 
There are some reliable routes across the network that can be used as alternative routes in case of 11 
main routes closure. The Category IV consists of links that are located on these reliable alternative 12 
routes. Failure of only one link from this category of links will cause the closure of a valuable 13 
reliable alternative route. Our results revealed that this category of critical links have the highest 14 
impact on network total travel time. 15 
 16 

 17 
FIGURE 9 Map of Category III and IV Links across Salt Lake County Transportation 18 
Network. 19 
  20 
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CONCLUSION 1 
The main objective of this study was to propose a methodology for identifying most critical links 2 
in the transportation network and prioritizing them for pre-disaster retrofit efforts. We maintain 3 
that it’s crucial to consider both probability and consequence of each link damage, so critical links 4 
are those that have high severe damage probability and their damage have significant impact on 5 
network overall performance. We also mentioned that it’s essential to consider the combined effect 6 
of links’ disruptions on network performance measures. Moreover, a probabilistic approach were 7 
utilized to take the uncertainty about the disruption scenario into account. Therefore, by 8 
considering links’ damage probabilities and the combination of links’ disruptions the major 9 
shortcomings of previous studies were addressed.     10 

We applied our method to a real size transportation network, Salt Lake County network, to 11 
identify the most critical bridges in the network and prioritize them for pre-disaster retrofit efforts. 12 
Monte Carlo procedure was utilized to simulate 400 disruption scenarios that can occur after a 13 
M7.0 earthquake. Then, the results of Monte Carlo simulation were used to develop the optimal 14 
linear regression model. Our results reveals that the damage of 83 bridges have significant impact 15 
on network overall performance. These critical bridges do not necessarily carry large traffic 16 
volume but in case of their disruption there are a few alternative routes that can carry detouring 17 
traffic. In order to interpret the results, we introduced four categories of links. The first category 18 
consists of links that carry large traffic volume and provide main access to the downtown area. In 19 
the case of these links’ disruptions, there are a few reliable alternative routes that can carry such a 20 
large traffic volume. The second category includes sets of links that provide connectivity between 21 
different parts of the network. In the case of each set failure much longer alternative routes are 22 
available for travelers which can tremendously increase road users’ travel time. Third category 23 
consists of freeway links that carry large traffic volume but they are not identified as critical links. 24 
Most of past studies give higher importance to this category of links than second category. 25 
Availability of reliable alternative routes in case of these links failures is the reason why they are 26 
not identified as critical links. The last category of links are vulnerable parts of reliable routes that 27 
provide alternative routes for freeways. Our results reveal that these links have highest priority for 28 
fortification efforts. 29 

The proposed method can be easily applied to different transportation networks regardless of 30 
scale, topology, and the type of disaster that might impose disruption. We used usual PM peak 31 
hour demand for traffic network modeling. Yet in case that more information about the change in 32 
demand pattern is available, modified demand matrix can be used for simulating various disruption 33 
scenarios. Moreover, we assumed that after a short period road users reach a new equilibrium and 34 
no transient state of network is considered but in order to make simulation more realistic day-to-35 
day traffic modeling can be conducted. We also assumed that the disruption of each link does not 36 
have any impact on performance of other network links but in reality when a bridge collapses 37 
operation of all the links crossing under the bridge will be affected.     38 
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