MAPPING OF LIQUEFACTION HAZARD FOR SALT LAKE AND WEBER COUNTIES, UTAH

by Steven F. Bartlett Dec. 8, 2014 UGA

Utah Liquefaction Advisory Group

<u>Members</u>

Steve Bartlett, UU CE, Facilitator Mike Hylland, UGS liaison **Richard Briggs, USGS** Les Youd, BYU CE Kyle Rollins, BYU CE Kevin Franke, BYU CE Jim Bay, USU CEE John Rice, USU CEE Loren Anderson, USU CEE David Simon, SBI **Grant Gummow, UDOT** Jim Higbee, UDOT Travis Gerber, URS **Bill Turner, Earthtec** Ryan Cole, Gerhart-Cole

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

What is liquefaction?

Sand Blow or Sand Volcano

Ground Oscillation

Marina District, San Francisco, 1989 Loma Prieta Earthquake

Port of Kobe, 1995 Kobe, Japan Earthquake

Ground Settlement

2010 Christchurch Earthquake

Bearing Capacity Failure

1964 Niigata, Japan Earthquake

Lateral Spread

1964 Niigata, Japan Earthquake

Valdez, 1964 Alaska Earthquake

Flow Failure

Seward, 1964 Alaska Earthquake

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Example Maps

- Liquefaction Susceptibility Maps
- Liquefaction Potential Maps
 - Scenario Maps
 - Probabilistic-Based Maps
- Ground Failure Maps
 - Lateral Spread
 - Ground Settlement

- Liquefaction
 Susceptibility Maps
 - Show liquefaction hazard based on susceptibility (capacity), but do not consider demand (size of amplitude of strong ground motion)

Liquefaction Potential Maps

- Combine liquefaction susceptibility (capacity) with seismic input (demand).
- Demand can be expressed as a deterministic scenario event or a probabilistic-based estimate obtained from the national seismic hazard maps

Ground Failure Maps

- Consider liquefaction potential
- Consider consequences of liquefaction (i.e., displacement)

 Median probabilities of lateral spread displacement exceeding lateral spread 0.3 m, 2,500-year return period seismic event

Types of Liquefaction Maps (ULAG Maps funded by NEHRP)

- Liquefaction Potential and Ground Displacement Maps
- Seismic Strong Motion (SM) Inputs for Liquefaction Potential Maps
 - M7.0 Earthquake
 - SM with 10% probability of exceedance in 50 years
 - SM with 2% probability of exceedance in 50 years

Fully aggregated PSHA input

- Lateral Spread maps (using above scenarios)
- Ground settlement maps (using above scenarios)

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

$P(L) = \Sigma P[L|A,M] P[A,M]$

where:

P(L) = annual probability of liquefaction

P[L|**A,M**] = conditional probability of liquefaction given the peak ground acceleration and the earthquake magnitude,

P [A, M] = joint probability density function of peak ground acceleration and earthquake magnitude.

Recommended "Probabilistic" SPT-Based Liquefaction Triggering Correlation (For MW=7.5 and sv'=1.0 atm) (Seed et al. 2003)

Subsurface data collection

- Standard Penetration Testing (SPT)
- Cone Penetrometer Testing (CPT)
- Shear Wave Velocity Testing (VS)

- Subsurface data collection
 - Standard Penetration Testing (SPT)

- Subsurface data collection
 - Cone Penetrometer
 Testing (CPT)

Subsurface data collection

Cone
 Penetrometer
 Testing (CPT)

Subsurface data collection
 Shear Wave Velocity Testing (VS)

 Downhole (SCPT)

 Surface geophysical techniques

 Spectral Analysis of Surface Waves (SASW)

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Setimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

Estimation of Ground Displacement

- P(DH > x) = ∑ P[(DH > x) | L] P[L | A, M, R] P[A, M, R] Where:
 - P(DH>x) = The probability of lateral spread exceeding a threshold value (e.g., x= 0.1 m and 0.3 m)
 - P[L| A,M,R] = the probability of liquefaction given an acceleration, magnitude, and source distance.
 - P[A,M,R] = joint probability density function of peak ground acceleration, magnitude and source distance.

Estimation of Ground Displacement

Youd, Hansen, Bartlett (2002) Empirical Model

 $Log D_{H} = \frac{b_{off} \alpha + b_{1}M + b_{2}Log R^{*} + b_{3}R + b_{4}Log W + b_{5}Log S + b_{6}Log T_{15} + b_{7}Log(100 - F_{15}) + b_{8}Log(D50_{15} + 0.1 \text{ mm})$

- Seismic Factors
 - *M*, *R*
- Topographic Factors
 - *W*, S
- Geotechnical Factors
 - T₁₅, F₁₅, D50₁₅

Free-face ratio: *W* (%) = *H* / *L* * 100

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

Estimation of Settlement

Estimation of Settlement

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

- Surficial geologic maps
- Topographical maps
- Digital Elevation Model (DEM)
- Groundwater depths
- Aerial photography
- Investigation Reports
- Surficial geologic mapping (Personious and Scott, 1992, Biek et al. 2004, and Miller 1980)
- Fault location data
- River and channel locations and depths
- Great Salt Lake location
- Peak ground acceleration map (pga, Wong et al. 2002)

Geologic Map

Qal₁ – Stream alluvium 1

Qal₁ – Stream alluvium 1

Qal₁ – Stream alluvium 1

Groundwater Depth Map

Digital Elevation Model

Estimates of peak ground acceleration (Wong et al., 2002)

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

Map Creation

Predicted Lateral Spread Displacement at Boreholes

Topics

- Types of Liquefaction Damage
- Types of Liquefaction Maps
- Stimation of Liquefaction Potential
- Stimation of Ground Displacement
- Estimation of Settlement
- Other Mapping Inputs
- Map Creation
- Map Examples

Map Examples – Liquefaction Potential (Aggregated)

Map Examples

M 7.0 Lateral spread displacement map (15 percent chance of exceedance)

(Recommended for regulatory use)

Map Examples

Mapping 85% threshold (i.e., 15% or less chance of exceedance)

Cumulative histogram of lateral spread displacement

Map Examples Lateral Spread or 2500 and 500-year scenarios

Map Examples

M 7.0 Ground Settlement Map (15 percent chance of exceedance)

(Recommended for regulatory use)

Map Examples Ground Settlement Map for 2500 and 500-year scenarios

Mapping of Weber Co.

Less geotechnical data

- Improve methods of combining geotechnical data with surficial geology
- Better methods for including CPT data
- Generalize displacement regression model
- Perform uncertainty analysis
- Improve the influence of topography

Zone	Soil Behaviour Type (SBT)	
1	Sensitive fine-grained	
2	Clay - organic soil	
3	Clays: clay to silty clay	
4	Silt mixtures: clayey silt & silty clay	
5	Sand mixtures: silty sand to sandy sil	
6	Sands: clean sands to silty sands	
7	Dense sand to gravelly sand	
8	Stiff sand to clayey sand*	
9	Stiff fine-grained*	
	* Overconsolidated or cemented	

$$I_c = [(3.47 - LogQ_{tn})^2 + (LogF_r + 1.22)^2]^{0.5}$$

Robertson (1990) Soil Behavior Type Chart Boundaries of each zone estimated by circles with radius = I_c

Recommended "Probabilistic" SPT-Based Liquefaction Triggering Correlation (For MW=7.5 and sv'=1.0 atm) (Seed et al. 2003)

Estimation of Ground Displacement Gillins and Bartlett (2013) Empirical Model

 $Log D_{H} = \frac{b_{o} + b_{off} \alpha + b_{1}M + b_{2}Log R^{*} + b_{3}R + b_{4}Log W + b_{5}Log S + b_{6}Log T_{15} + a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{4}x_{4} + a_{5}x_{5}}$

 x_i = the portion (decimal fraction) of T_{15} in a borehole that has a soil index corresponding to the table below

Soil Index <i>(SI)</i>	Typical Soil Description in Case History Database	General USCS Symbol
1	Silty gravel, fine gravel	GM
2	Coarse sand, sand and gravel	GM-SP
3	Medium to fine sand, sand with some silt	SP-SM
4	Fine to very fine sand, silty sand	SM
5	Low plasticity silt, sandy silt	ML
6	Clay (not liquefiable)	CL-CH

Estimation of Ground Displacement

Liquefaction Potential Maps

Median probabilities of P_L , 500year seismic event

Median probabilities of *P_L*, 2,500year seismic event

Lateral Spread Hazard Maps

Median probabilities of exceeding 0.3 m, 500-year event

84th percentile probabilities, of exceeding 0.3 m, 500-year event

Lateral Spread Hazard Maps

Median probabilities of exceeding 0.3 m, 2,500-year event

84th percentile probabilities, of exceeding 0.3 m, 2,500-year event

For more information:

http://www.civil.utah.edu/~bartlett/ULAG/

Multilinear Regression Equations for Predicting Lateral Spread Displacement from Soil Type and Cone Penetration Test Data

Daniel T. Gillins, Ph.D., M.ASCE¹; and Steven F. Bartlett, Ph.D., M.ASCE² ¹Assistant Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331 (corresponding author). E-mail: dan.gillins@oregonstate.edu ²Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Utah, Salt Lake City, UT 84112. E-mail: bartlett@civil.utah.edu

Article History

Submitted: 18 January 2013 Accepted: 07 October 2013 Published: 05 December 2013

