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EXECUTIVE SUMMARY 

 LiDAR (Light Detection and Ranging) scanners are widely used reconstruction sensors 

that are able to quickly capture large amounts of data and create a highly accurate virtual 3D 

model. More recently, image-based reconstruction known as photogrammetry has emerged in the 

market of 3D reconstruction as a cheaper, user-friendly alternative to the traditionally used 

LiDAR technologies. Currently, UDOT uses Mandli Communications to gather LiDAR data 

from around the state of Utah for asset management and evaluation purposes.  

The purpose of this report is to detail the findings from a year-long comprehensive 

research study comparing LiDAR and photogrammetry technologies. Though only two 

technologies are being compared, there was a multitude of reconstruction instruments used such 

as hand-held cameras, drones equipped with cameras and LiDAR scanners, and LiDAR point 

clouds generated from mobile and terrestrial LiDAR scanners. The case studies mainly focused 

upon during this research are highway asset management, and pedestrian access ramp 

inspections. For each case study, point clouds were generated using LiDAR and image-based 

reconstruction, and then comparisons between the two clouds were carried out. These 

evaluations focused on variables such as point cloud density, linear accuracy, asset clarity, 

slopes, and overall point cloud quality. Other qualitative characteristics were evaluated as well 

such as cost, user interface, and ease-of-use for the average individual.  

Over the course of this research study it was found that LiDAR created a more uniform 

and accurate point cloud, but photogrammetry also offered a high-quality point cloud that was 

still very accurate. Both technologies were within one percent error of each other for the asset 

management case study, and for the pedestrian access ramp case study there was less than 0.15 

percent calculated error between LiDAR and photogrammetry technologies.  

Photogrammetry is a very cost-effective way to achieve the same results as LiDAR. The 

research presented in this report is written to present the reader with all data that has been 

gathered and evaluated, as well as the findings and opinions of the researchers involved in this 

study. The goal of this paper is to allow the reader to have a complete understanding of how each 

technology works, and how each performs under various mobile and static circumstances. Due to 
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the different strengths and weaknesses of each technology, it is ultimately up to the user of said 

technology to decide which one satisfies the given requirements for the situation at hand.  
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1.0  INTRODUCTION 

1.1 Introduction 

Managers must have comprehensive data on all assets' current status to optimize the 

rehabilitation process in civil infrastructure facilities. Accurate asset status is necessary to monitor 

and be aware of the extent to which all the facilities are performing. Infrastructure in the United 

States consists of approximately 4,161,00 miles of roads, paved and unpaved [1], with more than 

600,000 bridges, of which more than one-third are 50 years or older. According to the ASCE's 

Infrastructure Report Card of 2017, almost ten percent of all bridges in the United States are 

structurally deficient, and one out of every five miles of highway pavement is in poor condition. 

These statistics show that transportation infrastructure in the United States is fragile, and extreme 

precautionary measures are necessary in some circumstances as there is a growing backlog of 

transportation rehabilitation needs. There have always been debates about how to manage this 

extensive network of critical infrastructure properly. Monitoring the performance of assets and 

ensuring their maintenance is performed in a timely and satisfactory manner is of utmost 

importance. 

 

 

Figure 1 - Highway and Road expenditures compared to other state spending. "Highway and Road 

Expenditures", Urban Institute. 
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Many assets’ life spans are affected by factors such as weathering, corrosion, installation 

errors, and traffic accidents. With the ever-changing state of assets, fast, reliable, and accurate 

monitoring procedures are needed.  This problem requires an efficient data acquisition system 

that provides transportation departments with critical information on the current status of 

assets. State-of-the-art technologies are necessary for transportation departments because they 

are becoming increasingly more accurate, fast, and inexpensive than traditional methods. 

While manual vision-based data collection can provide valuable information on the status of 

assets, it is a time-consuming task which can lead to infrequent inspections. These gaps in 

inspections may lead to unreliable information on the true nature of an asset's condition. Not 

only are manual observations time-consuming, but they are also labor-intensive and subject to 

the inspector's opinions. Vision-based assessments done by a person may lead to the data being 

subjective and inaccurate. An accurate, comprehensive representation of all of a department's 

assets can help transportation facility owners make decisions based on their actual status, and 

it can help reduce errors due to subjective opinions and lapses in inspections. The emergence 

of sensing technologies (e.g., LiDAR) have allowed for civil infrastructure managers to have 

access to fast, accurate, and reliable data acquisition systems. Technologies such as LiDAR 

and photogrammetry can be a suitable alternative to manual observation-based data 

collections. Sensing technologies eliminate the subjectivity of manual observation-based data 

collection, and they also provide an accurate 3D representation of existing assets.  

Time-of-flight-based LiDAR (Light Detection and Ranging) is a mature and established 

technology that has many uses in the fields of Civil Engineering and Construction. UDOT, 

along with many other DOTs, currently uses LiDAR for various applications such as asset 

management of roadways and buildings, quality control of pavement surfaces, and 3D as-built 

documentation. LiDAR technology can provide a virtual, accurate 3D model of various assets, 

which can be a useful tool for companies. LiDAR is helpful because it allows for creating 

documentation with an accurate visual model. It can allow workers to access sites or objects 

from their office without having to travel back into the field to collect data or measurements. 

While LiDAR can be an effective technology, it has limitations that might preclude it from 

being useful and practical as a common engineering tool. LiDAR scanners can be costly, and 

some scanners require specific software, which can also be expensive. Along with the expense 

of procuring a LiDAR scanner and software, one must have specialized training and knowledge 
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of the technology to operate the equipment with a high level of certainty and accuracy. In-field 

scanning is typically a straightforward procedure; however, post-processing can be tricky due 

to the software's complexity, and without the right knowledge of the software, the data may 

not be accurate. Finally, LiDAR may not be a viable option for many people or companies. As 

mentioned, it is an expensive technology, and not all people have the means to acquire the 

equipment and go through the necessary training. 

Close-range photogrammetry is a technology similar to LiDAR, and it is emerging as a 

cheaper alternative to LiDAR. Photogrammetry is an image-based reconstruction technology 

that uses 2D images of a subject to recreate a virtual 3D model. The main benefit of using 

photogrammetry instead of LiDAR is that the technology is rather easy to use, and it is more 

cost-effective than LiDAR (Appendix A). Photogrammetry can be done with expensive drones 

and handheld cameras, but it can also be done with something as simple as a smartphone with 

a camera. There is no need for a large scanner that requires setup, leveling, and long scanning 

times. One captures images or videos of the point of interest and takes them back to the office 

for processing. There are many software packages in the world of photogrammetry that work 

well for research, education, and commercial purposes. A few examples of these softwares are 

Context Capture, 3DF Zephyr, Autodesk Recap, Agisoft Photoscan, and Visual SFM. 

1.2 Problem Statement  

Recently, some innovative departments of transportation (DOTs) in the United States have 

started making landmark decisions on the matter of implementing sensor-based data acquisition of 

their infrastructure. However, to that end, transportation divisions cannot sensibly choose the right 

technology unless they know whether that technology is able to meet their requirements or not. 

Due to LiDAR’s promising quality on other applications, some of the pioneer DOTs in the United 

States have begun using LiDAR laser scanners to assist in asset documentation for maintenance 

purposes [2]. Although the high accuracy provided by laser scanners’ point clouds has been 

proven, due to their astronomical prices, there has been an intense debate over the substitution of 

LiDAR-based reconstructed point clouds for image-based reconstructed point clouds. The 

accuracy and quality requirements in different transportation applications (i.e., asset management, 

maintenance, and structures) vary from low to high. Therefore, conducting a comparison between 
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the point clouds generated by laser scanners and the point clouds generated by stereo-photometry 

is the very measure needed in order to make an educated decision on which technology fits best. 

In addition, the accuracy and quality level that any sensor-based (including laser-based and 

photogrammetry-based) spatial data provides highly depend on all the settings in which they are 

collected. One important variable that governs the overall quality and accuracy of the 

transportation facility’s data collection is the speed at which the sensor moves capturing the data. 

According to an extensive review of research, there is a lack of research in not only 

photogrammetry-based point clouds but also scanner-based point clouds taken by moving sensors 

(scanners and digital cameras) at different speeds. The blurry effects on the images taken by a 

moving camera could lead to a substantial change in the number of extracted features from the 

image as well as the number of matches in the pair of images. Likewise, due to being mobile during 

spatial data collections, even the expensive, sophisticated laser scanners cannot operate at an 

accuracy as high as they can in the stationary setting. Hence, the case studies have been divided 

into two different categories of transportation applications as follows: 

• Roadway asset management and maintenance 

• Pedestrian ramp inspection 

The above categories have been chosen due to the different speeds of the moving sensors that 

are being used during the data collection. In the first category, data is collected in two sub-

categories: 1. Highway (high-speed data acquisition); 2. City (low-speed data acquisition). The 

data for pedestrian inspection is acquired in a semi-stationary and fully-stationary setting. In 

addition to accuracy and quality assessment in the above categories, the cost and efficiency of the 

two data-acquisition approaches are evaluated as well and presented in Appendix A. 

Advances in photogrammetry-based 3D reconstruction software packages have changed the 

way in which one can have access to the 3D representation models. The previously open-sourced 

programs are now available through these software packages in a compacted version, which is 

easier to use for non-expert users. Still, according to their different algorithms in processing and 

providing the final output, non-expert users need guidance in choosing the software package that 

is suitable to their application. According to the challenges of data acquisition in the transportation 

area, the sensitivity of the images during processing can be very high. That is why different 



 

16 

 

software packages were used on the same data, to study their feasibility in the above-mentioned 

transportation applications.  

In addition, these fast-prepared 3D representations could also help project managers to 

document the existing assets on their sites. Thus, in this paper, a realistic assessment of the time 

needed for data collection and data processing for each of the different mentioned tasks has been 

included. This is to help decision-makers when it comes to deciding to employ one of these 

technologies in their projects. 

While the accuracy of these remote sensing techniques is highly sensitive to harsh weather and 

environmental conditions, investigating the quality and ability of these techniques in conditions 

such as rainy, snowy, and stormy days, which highly affect the reflectivity of surfaces, are outside 

the scope of this research. Nevertheless, the influence of different lighting conditions in outdoor 

settings is explored in this research. 

1.3  Objectives 

LiDAR and photogrammetry output processed data in the form of 3D point clouds. While 

the output is similar for both technologies, parameters such as the density of generated point 

clouds and levels of accuracy may differ. Also, one technology may work better than the other 

depending on environmental conditions and the distance of the object/site of interest. Despite the 

growing popularity of close-range photogrammetry and its ease of use and low-cost technology, 

it has not yet been considered a practical scanning tool within UDOT divisions. The purpose of 

this project and report is to address this issue and explore the feasibility of using close-range 

photogrammetry as an alternative technology to the currently used LiDAR technology at UDOT. 

1.4  Scope 

The scope of this project covers a few different divisions within the transportation 

department in order to have a comprehensive data set that covers multiple disciplines. The scope 

of work of this research covers the following: 

• Highway/City Road Asset Management and Inspections 

• Pedestrian Access Ramp Inspections 



 

17 

 

 

The reason research was conducted in these two areas is because each case requires a 

different data acquisition approach, and data is analyzed differently within each discipline. Asset 

management data acquisition is done in a completely mobile state which makes it different from 

pedestrian-access-ramp data acquisitions. Due to the mobile nature of data acquisitions for asset 

management and the speed being traveled, point cloud data can be subject to higher errors, 

therefore it was important to have other research areas to conduct studies in a semi-static data 

collection procedure. In each case, reconstructed data is analyzed differently to see how 

photogrammetry would perform compared to standard LiDAR procedures.  

 

1.5  Outline of Report  

• Introduction 

• Research Methods  

• Data Collection 

• Data Evaluation  

• Conclusions 

• Recommendations and Implementation 

 

2.0 RESEARCH METHODS 

2.1 Background 

2.1.1 Laser Scanners 

LiDAR is an established technology that is continuing to grow and be proven as a useful 

tool to a multitude of industries. There are three main types of laser scanning technologies; time-

of-flight (TOF), phase shift, and triangulation-based systems. Phase shift scanners tend to be the 

fastest data acquisition system; however, they have a limited range of around 80 meters. 
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Triangulation-based scanners are limited to a range of less than 5 meters, which makes them 

suitable for scanning small objects at a close range. Most long-range scanning is performed by a 

TOF LiDAR scanner because they have the greatest data acquisition range, reaching up to 

hundreds of meters. However, the long range of these scanners can cause longer data acquisition 

times and lower accuracy. TOF scanners operate by sending out a laser pulse which is then 

reflected from a given surface and returns to the scanner’s sensor. The sensor uses the time of 

flight of the pulse and the speed of light to accurately calculate the distance traveled. The 

differences in laser return times and changes of laser wavelengths are used together to make a 

precise virtual representation of a surface and its individual characteristics. Each pulse stores 

information such as spatial coordinates, RGB data, and intensity data. Over the course of scanning 

an object or site, this data is organized and stored in points that collectively create the overall point 

cloud. Quite a few studies have been carried out to evaluate the performance [3], accuracy [4], and 

quality of laser scanners on generating spatial data from different scenes [5] with various surfaces 

[6] in different lighting and ambient conditions [7]. Even the first models of laser scanners held 

the promise of giving a high-definition output (in increments of one millimeter) at ranges from 1.5 

m to 50 m in an indoor setting [4]. Furthermore, some studies on the generated point clouds of 

different surfaces show a slight reduction in accuracy of LiDAR technology while scanning dark 

[5] and wet surfaces [6]. 

 

                                           

Figure 2 - Leica LiDAR Scanner. "Leica RTC360", Spatial Technologies. 

 

In practice, laser scanners have been employed for transportation applications such as: 1. Urban 

modeling; 2. Asset inventory; 2. Intersection modeling; 3. Asset encroachment collection; 4. 
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Overhead clearance measurements of obstructions in roadways; 5. Acquisition of pavement 

condition data.  

 

Figure 3 – Mandli’s Mobile LiDAR Vehicle 

2.1.2 Photo/Videogrammetry 

Image-based 3D reconstruction is the process of taking 2D images from 3D objects, and 

then processing the images to create a 3D point cloud. In this method, spatial information of an 

object is obtained from a set of photos and/or video frames. The summarized process is as follows: 

1. Image acquisition: Two or more images are needed for every single point in the real world to be 

reconstructed. Later, the acquired views of the point in the scene will go through the triangulation 

process; 2. Feature extraction: Points with distinguished features (such as corners) are detected to 

computationally characterize the acquired images; 3. Camera calibration and image registration: 

In order to estimate the position and orientation of the cameras in the world coordinate, detected 

features in multiple photos are utilized to find intrinsic and extrinsic camera parameters; 4. Depth 

determination: Finally, correspondences are found by feature-matching between pairs of images 

to determine the depth information of the points in the 2D images into the 3D space using the 

triangulation process.  

Similar to LiDAR technology, feasibility studies on image-based 3D reconstruction are 

carried out in transportation, construction, and structure-related applications [8]. Despite their 

lower accuracy in comparison to LiDAR technology [9], image-based as-built 3D reconstruction 

of civil infrastructures [10] [11] as well as photogrammetry-based construction project progress 

monitoring are among the most established applications in the civil engineering area. Klein et al. 
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[11] worked on environmental limitations (occlusions by labor, construction machinery, etc.) of 

image-based as-built documentation of buildings on construction sites.  

The only difference between photogrammetry and videogrammetry is that instead of 

images, video frames are processed to measure and obtain spatial data. However, according to the 

lower resolution of the video frames compared to the digital images, studies focusing on 

videogrammetry have been conducted. Pollefeys et al. [12] made use of video in order to 

reconstruct 3D models of urban areas in a real-time manner. Brilakis et al. [13] presented a 

framework in data acquisition by videogrammetry. Additionally, an optimized selection of the 

keyframes method is given by Rashidi et al. [14] in order to make the most of the collected video 

data. 

2.1.3 Laser Scanners and Photogrammetry in Construction 

LiDAR Technology dates back to the 1960s, however it was not utilized as a tool in design 

and engineering until the 1990s. Budget optimization and data management is pivotal in having a 

successful and profitable construction project. It is important to be able to collect and recall 

important information quickly during various phases of construction. Laser scanning and 

photogrammetry have emerged as a solution that makes planning, construction, and phase 

monitoring easier and faster. The information provided by these technologies provides immediate 

and accurate measurements that can be used for precise project coordination. Laser scanners can 

gather quality information much faster than conventional project mapping. Tasks that may require 

hours or days of inspection by an individual manually can be completed in minutes by a scanner. 

Cost saving in construction is of utmost importance, and saving time tends to save money. Not 

only do LiDAR and photogrammetry save time, but they reduce tedious manual labor. When 

inspection or mapping is carried out by an individual who is fatigued from manual labor, the 

measurements may be prone to error. Scanning can help reduce error and ensure a higher level of 

accuracy. Incorporating these technologies into a construction workplace may also help streamline 

coordination. Having an accurate 3D model in the form of a point cloud allows for workers to 

share files and extract precise information without having to travel back into the field to do so. 

Valuable information can be shared effortlessly between parties.  
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There is a vast amount of research online that helps prove that these technologies can offer 

many advantages in construction over conventional procedures. Lato et al. [15] conducted a study 

into the mapping of shotcrete thickness using LiDAR and photogrammetry. Lato used this data to 

correct over-calculations of shotcrete due to rockmass convergence. Veneziano et al. [16] noticed 

the need for quick and accurate information regarding surface terrain during construction or 

relocation of infrastructure facilities and quickly turned to LiDAR and photogrammetry as a 

promising alternative. Veneziano et al. utilized LiDAR in conjunction with photogrammetric 

mapping to speed up construction phases to save time and money. A common finding in many 

research studies is that LiDAR and photogrammetry can be a tremendous help in cutting project 

costs and lost time. There is an initial upfront cost with these technologies, however the jobs that 

can be done with them tend to be much faster and more accurate than traditional manual 

procedures. Both technologies are proving to be promising tools in construction and engineering 

and are quickly on their way to becoming standard in the industry. 

 

2.2 Accuracy and Quality Measurement Methods 

In order to quantitatively characterize the quality of the point clouds resulted by both ultra-

light laser scanners and digital cameras, different procedures and measurements have been 

improvised for each category (roadway asset management and maintenance, and pedestrian ramp 

inspection).  

Linear accuracy evaluation is carried out by comparison of the ratios of length to width 

[17] in different planar objects. Subsequently, the actual ratios and the ratios obtained from the 3D 

models are compared to each other to find the error in reconstructing those planar objects. To 

follow a standard method for measuring the length of planar objects’ sides, using the KD-tree 

algorithm, which is based on a space-partitioning data structure [18], a planar facet is 

superimposed on the surface of interest such as traffic signs’ point clouds and pavement point 

clouds. Cartesian distances of two ends of each side (edge) on the detected, usually rectangular, 

surfaces by KD-tree fusion are considered as the length of that side. In this way, subjective 

measurements decrease significantly since picking the endpoints of an edge in a point cloud can 

be varied to some extent person by person. Since the superimposed surfaces on rectangular shapes 
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in the point cloud (traffic signs, strips, etc.) are not always a perfect rectangle, there is still some 

error in this measurement in some cases; however, this error is very low and negligible. The 

computed errors are subjected to +-1% error.  

Based on the geometry, the slope of a line in the 3D space of the generated point clouds is 

calculated by dividing the rise by run. With the z-axis aligned with the elevation (rise) axis, slope 

calculation is simply calculated as follows: 

Slope =
rise

run
 

rise =  ∆z 

run =  √∆x2 + ∆y2 

Quality assessment of the completeness is carried out by comparison of the spatial data 

resolution in the generated point clouds. To that end, the number of points around each point within 

a certain radius in the point cloud are counted in order to determine the density distribution. 

Saturation of the point clouds is determined by counting the number of points with the same 

nearest-neighbor distances. For further illustration, a histogram of both the density distribution and 

the saturation is made. 

2.3 Comparison Methods 

Point clouds are compared in 1. Accuracy; 2. Spatial data resolution; 3. Operation time: 

day; 4. Software cost; 5. Equipment cost; 6. Data-acquisition time; 7. Data-acquisition surveyor 

and labor cost: (number of labors and/or surveyor needed) 8. Data processing time; 9. Difficulty 

level of the techniques; 10. Portability of the data; 11. Ease of transferring the technology to the 

second users; 12. Measurement range of distance; 13. Data storage requirement.  

As previously mentioned, there is a vast array of software packages that can be used for 

image-based 3D reconstruction. However, most of those softwares are geared towards semi-static 

or drone data acquisition in which the sensor captures data in a circular pattern around the object 

of interest. For the asset management portion of this project, decisions needed to be made about 

which software package would work best in this case due to the linear nature of data acquisitions. 

This was done by using a control set of 163 images that were captured during data acquisition of 

a city street (Table 1). The same 163 images were uploaded into each software package, and 



 

23 

 

variables such as registered images, processing time, number of points, and overall point cloud 

quality were evaluated [Table 1]. It is of utmost importance to choose the software packages that 

provide a dense point cloud output and clear enough data. After reviewing the data output from 

each software package, the conclusion was reached that for the asset management portion of this 

research, Context Capture and 3DF Zephyr provided the most comprehensive and complete point 

clouds (Figure 4, a-e). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 4 - Comparison of various software packages using the same control set of 163 images. (a) Agisoft, (b) 

Reality Capture, (c) 3DF Zephyr, (d) Context Capture, (e) Pix4D 

 

Table 1 – Comparison of different software packages using a control set of 163 images 

Software Package Number of 
Registered Images 

(Out of 163) 

Processing Time 
(hrs) 

Number of 
Generated Points 

Point Cloud Quality 

Agisoft 89 3.5 21,145,499 Terrible 

Reality 
Capture 

161 3 12,000,000 Poor 

3DF Zephyr 163 2 2,102,289 Good 

Context 
Capture 

163 1.75 55,104,235 Great 

Pix 4D 163 4 1,452,751 Poor 
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2.4 Summary 

Image-based and LiDAR-based reconstruction have a role to play when it comes to asset 

management and evaluations in the world of transportation. Both technologies have positive and 

negative characteristics, therefore the purpose of this research study is to carry out 

comprehensive comparisons between the two technologies by implementing them in two very 

different asset management applications. By applying these technologies throughout areas such 

as highway transportation asset management and ADA pedestrian access ramps, a conclusion 

can be drawn on which technology works best in the situations at hand. Variables such as 

density, linear accuracy, and slope measurements can be used to see how each technology will 

perform, and in which environment each technology thrives. Not only will the performance of 

each technology be evaluated, but cost and the overall ease-of-use of the technologies and 

corresponding softwares will also be included in the evaluations.  

3.0  DATA COLLECTION 

3.1  Overview 

Data collections for this research project were done in varying settings with different data 

acquisition cameras. Asset Management data collections were carried out in a fully mobile data 

collection procedure using a small high-quality action-sports camera mounted to the hood of a 

vehicle while traveling down highways and city streets. In image-based reconstruction, it is 

recommended that the camera operator travel around the object of interest in a circular pattern 

while taking pictures in order to have sufficient overlap between images of all sides of the object 

of interest. This collection procedure was simply not possible due to the linear nature of highway 

and city roads, therefore different settings and programs were tested to see which would work 

best. A trial-and-error procedure using various camera settings, camera angles, and mounting 

positions were tested during this data collection portion to gauge which would provide the best 

data, and they are discussed further along in this section.  

Data collections for pedestrian access ramps are much different than the collections done 

for asset management, and they are done in a more traditional manner. The first step in the 

pedestrian access ramp collection was setting up a meeting with the access ramp professionals 
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from UDOT to get a better understanding of what a pedestrian ramp is and the various 

components that it is comprised of. After this meeting, a handheld camera was used to capture 

images from all sides and angles of a pedestrian access ramp, and those images were later 

processed using a 3D reconstruction software. While the data collection procedures for each 

study are quite different, point cloud models were able to be generated using both linear and 

traditional data collection methods.  

3.2  Roadway Asset Management 

3.2.1 Data Acquisition Cameras  

Data collection for the asset management portion of this project included testing a 

number of different camera settings, traveling speeds, lighting conditions, and directions of 

travel. Initially, data collection started on city streets due to the ability to find sections of road 

that have limited traffic and lower speed limits. It was important to test different software, 

processing settings, and camera settings to fine-tune the collection procedures before moving on 

to an area that requires a high-speed data collection such as a highway.  

Data collections were carried out by mounting a GoPro camera to various areas of a 

Toyota Tacoma using a suction cup mount [Figure 5]. The initial camera used for data 

collections was a GoPro Hero 3+ Black Edition. This was a good camera to start with, however it 

is limited to 4k video resolution at 15 frames per second, and 2.7k video resolution at 30 frames 

per second. Another downfall of this camera is the lack of in-camera video stabilization. It is 

imperative to have a stabilized video when traveling at highway speeds in order for the extracted 

video frames to be clear and not blurry.  After honing in the collection procedures and ensuring 

good roadway models were attainable, the decision was made to purchase the new GoPro Hero 8 

camera to carry out the rest of the asset management data collection procedures. Both cameras 

have a 12-megapixel sensor, however this camera far surpasses the GoPro Hero 3+ with video 

resolutions such as 4k resolution at 60 frames per second, 2.7k resolution at 120 frames per 

second, and 1080P resolution at 240 frames per second. Along with the improved resolution to 

frame rate of this camera, it has great in-body video stabilization which makes each video 

extremely smooth and clear, even traveling at highway speeds. Along with using a GoPro, a DJI 
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Mavic Pro 2 was used to carry out UAS data collections. These collections were done with the 

supervision of Paul Wheeler from the UDOT Aeronautics division. During data collections the 

image overlap was set to 80% between each image, and each image has a precision of 1.03 

inch/pixel ground sampling distance (GSD).  

 

Figure 5 – GoPro mounted to hood of vehicle using suction cup mount 

 

 Data was collected from a multitude of roads that vary in speed, traffic conditions, assets, 

and pavement markings [Table 2]. Not all data collections are documented in the referenced 

table because of factors such as bad video quality, too much traffic to collect data, or the data just 

was not good enough to process an acceptable model. The table shows the data collection runs 

that were pivotal in these research efforts. After successfully creating a good city street model 

with the new GoPro camera, work began on the most important part of the asset management 

portion of this project, which is highways. Highways were initially a bit of trouble because rather 

than traveling at 25 miles per hour with limited traffic, speeds were anywhere from 40-60 miles 

per hour during collection with a large amount of traffic and fast-moving vehicles.  
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Table 2 – Data Collection Spreadsheet 

 

 

Date & 

Time
Comments about collection

Road 

Location

Miles Driven 

During Data  

Collection 

Driving 

Direction 

(N,S,E,W)

Recording 

Settings

Speed 

Limit 

(MPH)

Actual 

Speed 

(MPH)

Road 

Condition

Camera 

Position

Angles (0° 

is straight 

forward)

Sky Conditions

11/8/2020

1:00 PM

City Street data collection to work 

on asset management

on 700W just 

off of 1700S
6 Miles South

2.7K @ 30 

FPS, Wide
25 25

Asphalt, lots of 

black streaks 

from assumed 

crack repairs

Centered 

on hood
0° Sunny 

11/18/201

9

12:00PM

City Street data collection to work 

on asset management

On 600W just 

off of 1700S
8 Miles North

2.7K @ 30 

FPS, Wide
30 25 Asphalt road

Centered 

on hood
0° Sunny

1/14/2020,  

12:45 PM

City Street data collection to work 

on asset management

1300 S 

Between 900E 

and Lincoln 

Street

12 Miles East
2.7K @ 30 

FPS, Wide
30 25

Asphalt, lots of 

black streaks 

from assumed 

crack repairs

Centered 

on hood
0° Sunny

2/08/2020, 

1:45 PM

City Street data collection to work 

on asset management

Driving North 

on 900W 

between 

1700S and 

1300S

5 Miles North
2.7K @ 30 

FPS, Wide
30 25

The road 

appeared to be 

asphalt but had 

sections of road 

repairs

Centered 

on hood
0°

Partly Cloudy 

with blue skies

2/11/2020, 

2:00 PM

City Street data collection to work 

on asset management

1300 S 

between 700E 

and 1100E

8 Miles East
4K @ 30 FPS, 

Linear 
30 30

Asphalt, lots of 

black streaks 

from assumed 

crack repairs

Centered 

on hood
0°

Mostly cloud 

covered. Still 

good illumination

2/14/2020 

1:00PM
Highway collection I-15N 18 Miles North

2.7k @ 120 

FPS, Linear
70 60 typical highway

Centered 

on hood
0°

Light cloud cover 

with good 

sunlight

2/17/2020, 

2:00 PM

I was focusing on pavement for this 

collection. 

1301 S 

between 700E 

and 1100E

8 Miles East
4K @ 30 FPS, 

Linear 
30 30

Asphalt, lots of 

black streaks 

from assumed 

crack repairs

Centered 

on hood
0°

Light cloud cover 

with good 

sunlight

2/19/2020, 

12:00PM

I found a location that I thought 

may be good to process so I ran 

through this particular section of I-

15N a few times to try to get some 

acceptable data

I-15N 25 Miles North
2.7K @ 120, 

Wide
65 60 typical highway

Centered 

on hood
0°

No clouds. 

Sunny

2/19/2020, 

2:00PM

Trying to collect videos from 

various areas of I-215N
I-215N 23 Miles West

1080P @ 120, 

Linear
65 60 typical highway

Centered 

on hood
0°

No clouds. 

Sunny

2/20/2020, 

11:00 AM

Trying to collect videos from I-

15N in various locations
I-15N 17 Miles North

2.7k @ 60 FPS, 

Linear
65 ~60 typical highway

Centered 

on hood
0°

Light cloud cover 

with good 

sunlight

2/20/2020, 

11:00 AM

Trying to collect videos from I-

15N in various locations
I-15N 19 Miles North 4k @ 60, Wide 65 60 typical highway

Centered 

on hood
0°

No clouds. 

Sunny

2/21/2020, 

2:00 PM

This particular run I decided to try 

a different approach to data 

collections. I tried to use 3 

different camera angles, one facing 

left by 15 degrees, one cenetered, 

and one facing right by 15 degrees. 

I did this to see if we could merge 

all videos in context capture

I-201 East 15 Miles East
2.7K @ 60, 

linear
65 60-65

rough highway 

with ongoing 

construction 

one view 

left, one 

center, 

one right

 -

15°,0°,15°

No clouds. 

Sunny

2/23/2020, 

3:00 PM

Trying to collect videos from I-

15N in various locations
I-15N 25 Miles North

4K @ 30 FPS, 

Linear 
65 55 typical highway 

one view 

left, one 

center, 

one right

 -

10°,0°,10°
Very little clouds
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Table 2 cont. – Data Collection Spreadsheet 

 

 

 

3/15/2020, 

9:45 AM

This day I was recording videos 

from a specific section of I-15N 

that I knew had less vehicle traffic 

and I could drive slower

I-15N 14 Miles North

1 run with 4K 

@ 60 FPS and 

2 runs with 

2.7K @ 120 

FPS

65 45-55 typical highway 
Centered 

on hood
0° Very little clouds

3/15/2020, 

11 AM

Trying to collect data from the first 

portion of mandli's model
I-15N 12 Miles North

2.7k @ 120 

FPS, wide
65 55-60 typical highway 

Centered 

on hood
0° No clouds

3/23/3030,  

10:45:00 

AM

Trying to collect more videos from 

section 1 since the previous section 

1 model was not the best. Tried to 

drive slower

I-15N 10 Miles North
2.7K @ 120 

FPS, wide
65 55 typical highway 

Centered 

on hood
0°

Cloudy, storm 

moving in, low 

sunlight

3/24/2020, 

11:00 AM

This video was to collect data on 

the last portion of the model we 

had from mandli

I-15N Exit 6 Miles
North then 

South

2.7K @ 120, 

Wide
25 20 typical highway 

Centered 

on hood
0°

Cloudy, low 

sunlight

4/28/2019

5:30 PM

The purpose of this data collection 

was to record videos from a 

different highway than I-15. I 

recorded various videos from all 

over I-80 driving east. 

I-80E 23 Miles East
2.7K @ 120, 

Wide
65 50 typical highway 

Centered 

on hood
0° No clouds

5/9/2020

11:00 AM

This collections purpose was to 

record the same section using 6 

different video resolutions to try to 

compare the outcomes of various 

video resolutions

Driving north 

on I-15. All 

videos were 

recorded on 

what is 

previously 

known as 

"section  2"

34 Miles North

4k@60 FPS, 

Wide

4k@60, Linear

2.7K @ 60, 

Linear

2.7K @ 120, 

Wide

1080 @ 240, 

Wide

1080 @ 120, 

Linear

60 45-50 typical highway 
Centered 

on hood
0° No clouds

5/17/2020

2:00PM

The purpose of this collection was 

to try to collect much data as 

possible. It was a cloudy day so I 

wanted to collect data from 

"section 2" in order to compare it 

to the section 2 from a sunny day. 

I also tried to get videos from a 

new highway (201) and I also tried 

to get videos from a 1 mile long 

section. Today wasnt the best day 

though because it was pretty busy 

and I was not really able to drive 

below 50 MPH. I got down to 40 

on section 2

Driving North 

and south on I-

15, driving 

east on I-80, 

driving east 

and west on 

201

44 miles

North, 

South, East, 

West

2.7k @ 120, 

Wide
65-70 50-55 typical highway 

Centered 

on hood
0°

Cloud coverage, 

low sunlight

5/27/2020

1:00PM

The purpose of this data collection 

was to collect videos from different 

speeds of a small section of road. 

The first speed was less than 

10MPH, then 10,20,30,40MPH. It 

was a nice sunny day with a little 

bit of cloud cover

Driving North 

on a city street
6 miles North

2.7k @ 120, 

Wide
25

<10,10,

20,30,4

0

City street with 

lots of repairs

Centered 

on hood
0° No cloud cover
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3.2.2 Camera Settings and Mounting Procedures 

Numerous variations of camera resolutions and frame rates were tested to figure out 

which settings are optimal for highway data collections. Out of all of the settings and 

combinations, the combination that worked best and provided the best point cloud model is 2.7k 

resolution at 120 frames per second with a wide field of view (FOV). The GoPro camera offers 

FOV’s such as linear, wide, and super-view. The linear FOV did not capture enough data 

regarding the signs that line the sides of the highway, and the super-view FOV was far too wide 

and stretched to create a reasonable model. The wide FOV captured signs on the sides of the 

highway road with limited video and model distortion.   

Along with testing resolution and frame rate combinations, different camera mounting 

angles and heights were also tested. There was also the question of whether mounting the camera 

on the hood of the vehicle or on the roof of the vehicle would work better for data collection. 

After evaluating data regarding both cases, a camera mounted on the hood worked much better 

than a camera mounted on the roof of the vehicle. When the camera is mounted on the roof of the 

vehicle as shown in Figure 6 (b), it is difficult to angle the camera in a way such that the hood of 

the vehicle is not in the field of view. If the camera is angled too far up excluding the hood from 

the field of view, the camera will not capture enough data on the pavement of the road and signs 

lower on the roadway. If the camera is angled too low on the roof of the vehicle, the hood of the 

vehicle will be in the field of view of the camera which can cause errors during processing 

[Figure 6 (d)]. A hood-mounted camera was easy to angle in a way such that the entire roadway 

and all pertinent signs are in the field of view, all while omitting parts of the vehicle from the 

video [Figure 6 (a) and (c)].  Along with different mounting elevations/locations, multiple 

camera viewing angles were tested. Three iterations would be completed over one section of 

highway road: One with the camera facing straight forward, one with the camera rotated about 

fifteen degrees to the left, and another with the camera rotated about fifteen degrees to the right. 

Frames were then extracted from each video, and then images were submitted for alignment. 

However, a camera mounted straight forward tended to provide best video and overall point 

cloud models.   
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 6 – Different mounting areas and their corresponding view. (a) Camera mounted on hood, (b) camera 

mounted on roof, (c) Field of view of hood-mounted camera, (d) Field of view of roof-mounted camera 

 

3.2.3 LiDAR Data Collections 

LiDAR data was collected by Mandli while under contract with UDOT. LiDAR models 

were obtained from connections within UDOT in order to carry out the comparisons between 

point clouds. LiDAR models were obtained for each successful highway model that was 

generated. Along with obtaining Mandli’s mobile LiDAR data, during the same meeting with 

Paul Wheeler, a DJI M600 drone with a mounted VX15 LiDAR scanner was used to gather 

highway data. This LiDAR scanner is able to capture up to 100,000 points per second.  
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3.3  Pedestrian Access Ramp Data Collections 

3.3.1 Pedestrian Access Ramp Inspections  

 

Data for the pedestrian access ramp portion of this project was collected from multiple 

locations with varying types of pedestrian access ramps to have a wide variety of point clouds to 

study. The first step in the pedestrian access ramp portion was to meet with UDOT and get a 

general idea of the different components of an access ramp, and get an idea of the type of 

measurements and inspections that are done in the field.  Upon meeting with UDOT 

representatives in the office, a date was set to meet in the field and carry out the inspections of 

four pedestrian access ramps according to standard procedures outlined in the UDOT C-170 

Pedestrian Access Ramp Evaluation form. This meeting was imperative, as there are many 

different components to an access ramp [Figure 7], each of which has different measurement 

requirements and specifications. 

 

 

Figure 7 – Pedestrian Access Ramp Components. Red: Pedestrian Access Route (PAR); Blue: Turning Space 

(T); Yellow: Ramp; Purple: Flares; Green: Detectable Warning Surface (DWS); Light Blue: Clear Space; 

Orange: Crosswalk 

 

 The inspections done by UDOT were carried out using a Smart Tool Smart Level 

[Figure 8], and a tape measure. The Smart Tool was used to measure the slope percentages of the 

various ramp components to ensure they were within the specified requirements, and the tape 

measure was used to ensure that various widths and distances of the ramp are also within 
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requirements. Upon completing the inspections with the representatives of UDOT, we were able 

to keep the inspection reports from each ramp inspection, that way in-field inspection 

measurements could be evaluated while extracting point cloud measurements.   

 

 

Figure 8 – Smart Tool Smart level 

 

3.3.2 Data Collection and Camera Settings for Image-Based Reconstruction 

  

 For the image-based portion of the pedestrian access ramp project, images were collected 

in a semi-static procedure that encompasses the entire access ramp area. The camera used for 

data collection was a Fujifilm XT-30 mirrorless digital camera. The Fujifilm XT-30 has a large 

26.1 MP sensor capable of capturing high-quality images with a lot of data in each image. The 

procedure for collecting data on each access ramp includes moving in a circle around the access 

ramp in question. It is important to be far enough away from the access ramp to capture all 

pertinent components, but not so far that it’s difficult for the camera to collect enough detail on 

all components. It is also imperative to move in a circular pattern around the access ramp 

because each image must have a large amount of overlap for the processing software to 

successfully align images. Each pedestrian ramp was generated using around 30 images, some 

needed more images and some needed less depending on how large the pedestrian access ramp 

is. There needed to be a delicate balance between collecting enough detail of each ramp while 

ensuring there was not an unnecessary number of images. If too many images are used, the point 

cloud density may be higher, however the file size can be very large and may cause programs to 

run slow. For this portion of research, the point clouds do not need to have a high number of 

images and an extreme density. A clean, comprehensive point cloud with acceptable point 

density and distinct enough features for evaluation can be achieved as long as there is sufficient 

overlap between images, meaning that each point in the scene must be captured in at least three 
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different images with different viewing angles. It is vital to ensure that all procedures are carried 

out in a way such that data size is optimal for processing and transferring between parties.   

 

3.3.3 LiDAR Data Collection 

 

 The LiDAR portion of this case study was carried out using a Maptek I-Site 8820 

terrestrial LiDAR scanner. This particular scanner is a long-range laser scanner capable of 

reaching distances of up to 2,000 meters. The laser scanner also has built-in panoramic imaging 

to give point clouds an accurate RGB color representation. The user also has many customizable 

settings that can be adjusted for different scanner scenarios such as: lighting conditions, point 

cloud density, image capture, and necessary accuracy. Setup and use of this laser scanner are 

quick and easy processes that include leveling the scanner, inputting the appropriate settings for 

the given scenario, and beginning scanning. Once the user starts the scanning process, the laser 

scanner does the rest of the work. Along with the scanner body, the laser scanner comes with a 

Panasonic tablet that allows for an easy streamlined scanning process, and gives the user the 

option to preview the scanning area to ensure that all necessary elements in the scene are 

captured. Table 3 below shows the data collection times, processing times, and a general 

overview of the point clouds created.  

 

Table 3 – Data collection and processing for pedestrian access ramps using photogrammetry and LiDAR  

Method Model 

In-Field 

Data 

Acquisition 

Time 

(Minutes) 

Number of 

images/scans 

(Aligned/Total) 

Processing 

Time 

Number of 

Points in Point 

Cloud 

File Size 

Image-based 

Reconstruction 

Ramp 1 < 5 min 31/31 47 min 2 sec 258,651,814 6.72 GB 

Ramp 2 < 5 min 37/37 52 min 22 sec 429,797,343 
11.17 

GB 

Ramp 3 < 5 min 27/29 52 min 26 sec 313,767,481 8.16 GB 

Ramp 4 < 5 min 31/31 47 min 8 sec 263,338,208 6.87 GB 

Ramp 5 < 5 min 27/29 51 min 23 sec 436,552,997 
11.35 

GB 

Ramp 6 < 5 min 24/25 49 min 20 sec 247,958,617 6.45 GB 

LiDAR-Based 

Reconstruction 

Ramp 1 16 m 30 s 1 scan No Processing 12,182,400 768 MB 

Ramp 2 17 min 1 scan No Processing 11,955,200 745 MB 

Ramp 3 12 m 9 s 1 scan No Processing 3,498,634 222 MB 

Ramp 4 13 m 45 s 1 scan No Processing 6,506,448 407 MB 

Ramp 5 13 m 9 s 1 scan No Processing 2,999,779 102 MB 

Ramp 6 13 m 32 s 1 scan No Processing 2,398,708 83 MB 
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4.0  DATA EVALUATION 

4.1  Overview 

Data evaluations were done separately for each case in this research project, however 

some of the principles are the same for each. For the asset management portion, models were 

compared in different ways. The first was comparing the overall density of point cloud models 

using multiple density algorithms, but the most important density variable is the number of 

neighbors. This is calculated by defining the radius of a sphere, and then the program calculates 

the number of points within a sphere with that radius. These spheres are imposed throughout the 

point cloud to get an overall index of uniformity. An equivalent radius of one centimeter was 

used. The reason an equivalent radius is necessary is because both the photogrammetry model 

and LiDAR model are in arbitrary units. Ground control points with known GPS coordinates are 

necessary in order to have a model with a scale accurate to the real world. However, ground 

control points are difficult to input into the model due to the location of data collections. It would 

be difficult to go onto the highway to get known GPS coordinates of particular points. The 

equivalent radius was calculated by extracting a measurement from the point cloud (e.g., width 

of a sign), and then comparing that measurement to the actual measurement in real life to obtain 

the scale of the model. Histograms and point cloud saturation images are included further along 

in this section. Along with the density of point clouds, accuracy of the size of reconstructed 

elements (e.g., signs) was also evaluated by comparing the ratios (height to width) of generated 

signs to the actual ratios of the signs in real life. Measurements were extracted from the image-

based point cloud and the LiDAR point cloud and then compared to the actual sign ratios to 

calculate a relative error.  

Data for the pedestrian access ramps was evaluated in ways that are similar to the 

evaluations of asset management point clouds. First, the density of point cloud models was 

calculated in the same way as the density for asset management point clouds, using the number 

of neighbors index. One of the most important measurements that are recorded from access ramp 

inspections are the slopes of various areas of the ramp. As mentioned previously, the ramps are 

made up of multiple components, and each component has slightly different slope and distance 

requirements. The accuracy of extracted slope measurements was evaluated from point clouds 
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along with the density readings to see if the slopes extracted from the point clouds were similar 

to slopes extracted from the in-field inspections. Slopes were measured in the point clouds by 

picking two points on the surface of the ramp component in question, and then dividing the 

change in Z coordinates by the distance of the projection along the XY plane [Figure 9]. 

 

Figure 9 – Slope measurement of a flare component of a pedestrian access ramp. ΔZ is the change in 

elevation, ΔXY is the projected distance along the XY plane. 

 

4.2.  Roadway Asset Management 

Data evaluation of the reconstructed roadway point clouds is imperative to gauge whether 

or not photogrammetry technology would provide sufficient enough data to be comparable to 

traditional LiDAR procedures. Table 4 below shows the data acquisition and processing time for 

all models from this case study. In the following data processing table [Table 5], you will see all 

of the information used to track the data collections, camera information, and processing 

information. Some data collections were processed multiple times, which explains why the data 

processing table may not match up exactly to the data collection table. During data collections, 

numerous videos are taken and may be processed at different times. Overall, the photogrammetry 

point clouds that were produced were very comparable to the provided LiDAR point clouds in 

terms of density and relative errors. One important factor to note is that in the following pages 

there will be images showing the densities of point clouds generated by photogrammetry and 
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point clouds generated by LiDAR. In each case, the photogrammetry point cloud is much denser 

than the LiDAR point clouds. LiDAR tends to produce a denser point cloud than 

photogrammetry, however due to the mobile nature of data collections, the LiDAR point clouds 

are not as dense. After numerous conversations with Michael Butler from UDOT on this topic, 

LiDAR point cloud sparsity may be due to the nature of the data collections. Mandli most likely 

uses certain technologies to help conduct data collections to ensure sufficient data is collected 

without gathering unnecessary data. For example, the sensors must be gathering data at a much 

faster rate while on a highway than when the vehicle is exiting or coming to a stop. If the sensors 

continued to gather data while the vehicle is stopped at the same speed it gathers data on the 

highway, there would simply be too much unnecessary information gathered. Therefore, Mandli 

most likely uses technology that allows them to control collected data. The GoPro Hero 8+ used 

in this case study does not have the ability to limit the amount of data gathered. It captures as 

much data as possible from each frame, and with the right conditions, these frames create very 

dense models.   

Another factor that affected the quality and data evaluations was the number of frames 

per second used to extract frames from videos. Numerous different frames per second were 

tested such as 100 FPS, 90 FPS, 50 FPS, etc. It was found that having 100 frames was a bit 

unnecessary, and most good models were created using 50 FPS. Fifty FPS was used for most of 

the models due to the fact that this was usually a good number of frames for each model without 

having too many frames making the file size larger than it needs to be. Data processing was also 

affected by the number of frames per second used. Using a large number of images (such as 100 

FPS) can cause data processing times upwards of nine to ten hours. However, whenever 50 FPS 

was used, data processing times were cut in half with an average processing time of around four 

to six hours.  
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Table 4 – Data collection and processing for asset management models 

Model Lighting 
Conditions 

Acquisition 
Time 

Traveling 
Speed 
(MPH) 

Model 
Length 
(Miles) 

Number of 
Registered Images 

(Aligned/Total) 

Processing Time 
(Image-Based)  

Number of 
Points 

Model 1 Dense clouds, 
intermittent light 

18 sec 50 0.25 999/999 2 hr 11 min 410 Million 

Model 2 Sunny, perfect sign 
visibility, no 
reflections 

20 sec 45 0.25 1195/1195 2 hr 48 min 430 Million 

Model 3 Sunny, perfect sign 
visibility, no 
reflections 

18 sec 20 (Exit) 0.1 1026/1026 2 hr 58 min 771 Million 

Model 4 Bright sunlight, 
many reflections 

40 sec 45 0.5 850/850          2 hr 5 min 776 Million 

Model 5 Indirect sunlight, 
low light on signs 

 20 sec 45 0.25 850/850 2 hr 41 min 706 Million 

Model 6 Sunny, good sign 
visibility 

18 sec 40 0.2 1107/1301 3 hr 42 min   1.3 Billion 
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Table 5 – Data Processing Table 

 

Date & 

Time

Road 

Location

Miles Driven 

During 

Collection 

Procedures

Model 

Length 

(Miles)

Driving 

Direction 

(N,S,E,W)

Recording 

Settings

Speed 

Limit 

(MPH)

Actual 

Speed 

(MPH)

Road 

Condition/Material

Camera 

Position

Angles (0° is 

straight 

forward)

Number of 

frames used 

per second 

(FPS)

Total number of 

images input vs. 

total number of 

registered images

Point cloud 

generation 

time

Number of 

Points

Median Key 

points per 

image

Median tie 

points per 

image

Reprojection 

Error (RMS)

1/14/2020,  

12:45 PM

1300 S 

Between 900E 

and Lincoln 

Street

12 0.5
Driving 

East

2.7K @ 30 

FPS
30 25

Asphalt, lots of black 

streaks from assumed 

crack repairs

Centered on 

hood
0° 30  -  -

55 million (1 

point cloud)
 -  -  -

2/08/2020, 

1:45 PM

Driving North 

on 900W 

between 1700S 

and 1300S

5 0.25
Driving 

North

2.7K @ 30 

FPS
30 25

The road appeared to 

be asphalt but had 

sections of road 

repairs

Centered on 

hood
0° 30  -  - 90 Million  -  -  -

2/11/2020, 

2:00 PM

1300 S 

between 700E 

and 1100E

8 0.75
Driving 

East

4K @ 30 

FPS, Linear
30 30

Asphalt, lots of black 

streaks from assumed 

crack repairs

Centered on 

hood
0° 30  -  -

60 million per 

cloud 
 -  -  -

2/14/2020 

1:00PM
I-15N 18 0.5

Driving 

North

2.7k @ 120 

FPS, Linear
70 60 typical highway

Centered on 

hood
0° 20

262 Total, 262 

Registered
4 hr 36 min 65 million 6,401 361 0.56 pixels 

2/17/2020, 

2:00 PM

1300 S 

between 700E 

and 1100E

8 0.25
Driving 

East

4K @ 30 

FPS, Linear 
30 30

Asphalt, lots of black 

streaks from assumed 

crack repairs

Centered on 

hood, but the 

camera angle 

was pointed 

downwards to 

focus on the 

roadway 

0°  -  -  - 1 billion  -  -  -

2/19/2020, 

2:00PM
I-15N 25 0.5

Driving 

North

2.7K @ 120 

FPS, Wide
65 60 typical highway

Centered on 

hood
0° 70

1302 Total, 1302 

Registered
9hr 44min

100 million - 

200 million 

per cloud

5,578 1,001 0.49 Pixels

2/19/2020, 

2:00PM
I-215N 23 0

Driving 

North

1080P @ 120 

FPS, Linear
65 60 typical highway

Centered on 

hood
0° 25

272 Total, 266 

Registered

17 min 42 

sec
57 million 3,131 21 0.55 pixels 

2/20/2020, 

11:00 AM
I-215N 17 0.5

Driving 

North

2.7k @ 60 

FPS, Linear
65 ~60 typical highway

Centered on 

hood
0° 30

420 Total, 420 

Registered
1 hr 3 min 230 million 5,365 280 0.6 pixels

2/20/2020, 

12:00 AM
I-15N 19 0.5

Driving 

North

4k @ 60 FPS, 

Wide
65 60 typical highway

Centered on 

hood
0°  -  - 900 million  -  -  -
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Table 5 cont. – Data Processing Table 

 

2/21/2020, 

2:00 PM
I-201 East 15 1

Driving 

East

2.7K @ 60 

FPS, Linear
65 60-65

rough highway with 

ongoing construction 

one view left, 

one center, 

one right

 -15°,0°,15° 40
803 Total, 788 

Registered
2 hr 43 min 110 million 5,960 186 0.64 pixels

2/23/2020, 

3:00 PM
I-15N 25 0.5

Driving 

North

4K @ 30 

FPS, Linear 
65 55 typical highway 

one view left, 

one center, 

one right

 -10°,0°,10° 30
Could not get 

photos aligned
 -  -  -  -  -

3/15/2020, 

9:45 AM
I-15N 14 0.5

Driving 

North

1 run with 4K 

@ 60 FPS and 

2 runs with 

2.7K @ 120 

FPS

65 45-55 typical highway 
Centered on 

hood
0° 92

1195 Total , 1195 

Registered

5 hr 38 

mins

430 Million 

Points  (5 

Tiles)

5,504 729 0.45 pixels

3/15/2020, 

11 AM
I-15N 12 0.5

Driving 

North

2.7k @ 120 

FPS, Wide
65 55-60 typical highway 

Centered on 

hood
0° 53

952 Total, 952 

Registered

4 hr 20 

mins

805 Million 

Points (3 

tiles)

5,413 348 0.52 pixels

3/23/3030,  

10:45 AM
I-15N 10 0.5

Driving 

North

2.7K @ 120 

FPS, Wide
65 55 typical highway

Centered on 

hood
0° 60

1057 Total, 1057 

Registered
NA NA 5,489 490 0.51 pixels

3/23/2020,  

10:45 AM

Continuation 

of above with 

less images

 -  -  -  -  -  -  -  -  - 50
999 Total, 999 

Registered
4 hr 19 min

410 Million 

points
5,485 436 0.55 pixels

3/24/2020, 

11:00 AM
I-15N Exit 6 0.2

Exit north 

then turn 

south

2.7K @ 120 

FPS, Wide
25 20 typical highway

Centered on 

hood
0° 43

1026 Total, 1026 

Registered
6hr 58 min 771 Million 5,467 837 0.43 pixels

4/28/2019

5:30 PM

Driving East 

on I-80 just 

before merging 

with I-15

23 0.3
Driving 

East

2.7K @ 120 

FPS, Wide
65 50 typical highway

Centered on 

hood
0° 50

850 Total, 850 

Registered
4hr 5 min 776 million 5,421 844 0.48 pixels

4/28/2020

5:30 PM

Driving East 

on I-80 while 

merging with I-

15

23  (same trip as 

above)
0.5

Driving 

East

2.7k @ 120 

FPS, Wide
65 45 typical highway

Centered on 

hood
0° 50

850 Total, 850 

Registered
5hr 41 min 706 million 14,910 1,165 0.61 pixels 
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Table 5 cont. – Data Processing Table 

5/6/2020

6:00PM
I-15N

0 miles driven. 

Reprocessing 

old video

0.5
Driving 

North

2.7k @ 120 

FPS, Wide
60 45-55 typical highway

Centered on 

hood
0° 50

728 Total, 728 

Registered
1hr 42 mins 200 Million 14,473 815 0.6 pixels

5/9/2020

5:00PM
I-15N 34 0.25

Driving 

North

4K @ 60 

FPS, Wide
60 45-50 typical highway

Centered on 

hood
0° 50

729 Total, 729 

Resistered

11 hrs 9 

min

1.7 Billion 

points 
6,451 136 0.46 pixels 

5/11/2020

5:00 PM
I-15N

34 (same trip as 

above)
0.25

Driving 

North

4k @ 60 FPS, 

Linear
60 45-50 typical highway

Centered on 

hood
0° 50

761 Total, 761 

Registered
9hr 37 min

1.7 Billion 

points 
31,080 398 0.63 pixels 

5/17/2020, 

3:00 PM
I-15S 44 1

Driving 

South

2.7k @ 120 

FPS, Wide
65 50-55 typical highway

Centered on 

hood
0° 50 and 60

Could not get 

photos aligned
 -  -  -  -  -

5/17/2020, 

3:30 PM
I-15N

44  (same trip as 

above)
0.25

Driving 

North

2.7k @ 120 

FPS, Wide
65 40-45 typical highway

Centered on 

hood
0° 50 and 90

Could not get 

photos aligned
 -  -  -  -  -

5/17/2020, 

4:00 PM
I-80E

45  (same trip as 

above)
0.25

Driving 

East

2.7k @ 120 

FPS, Wide
65 45-50 typical highway

Centered on 

hood
0° 50

802 Total, 802 

Registered
2 hr 20 min

150 million 

points
5,295 828 0.49 pixels

5/17/2020, 

4:00 PM
I-80E

46  (same trip as 

above)
0.25

Driving 

East

2.7k @ 120 

FPS, Wide
65 55-60 typical highway

Centered on 

hood
0° 50

Could not get 

photos aligned
 -  -  -  -  -

5/18/2020, 

4:00 PM

I-15S Exit 305 

C-A
23 0.25

Driving 

South

2.7k @ 120 

FPS, Wide
65 40-50 typical highway

Centered on 

hood
0° 50

1301 Total, 1107 

Registered

9 hr 42 

minutes 

1.3 Billion 

(Downsample

d to 500 

Million to 

make easier to 

work with)

13,171 1,209 0.59 pixels

6/2/2020, 

1:00 PM

Driving North 

on 700W 

between 2100S 

and 1700S

8 <0.1
Driving 

North

2.7k @ 120 

FPS, Wide
25 40 MPH

City street with lots of 

streaks and repairs

Centered on 

hood
0° 120

648 Total, 648 

Registered
6hr 38 min

350 million 

(300 million 

cleaned)

18,450 2,776 0.43 pixels

43985 North 9 0.1
Driving 

North

2.7k @ 120 

FPS, Wide
26 30 MPH

City street with lots of 

streaks and repairs

Centered on 

hood
0° 90

596 Total, 596 

Registered
4hr 56 min

267 million 

(217 cleaned)
17,524 2,830 0.44 pixels 
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4.2.1 Accuracy Assessment and Quality Assessment 

Table 6 below shows a comprehensive overview of all sign ratios (height to width) 

extracted from both image-based and LiDAR-based point clouds. Signs were separated into 

small, medium, and large sign groups, and an overall error encompassing all signs was also 

calculated. From our findings, the image-based point cloud’s overall relative error was within 

1% of the relative errors of the LiDAR-generated point clouds. It is worth noting that some signs 

from both image-based and LiDAR-based point clouds were excluded as outliers due to the fact 

that there were not enough generated points of that particular sign in order to get an accurate sign 

ratio measurement. Poorly generated signs can be due to a number of factors such as distance 

from sensor, vehicular obstructions, and environmental conditions causing too much reflection 

on the sign. These outliers were not native to image-based point clouds, as there were some signs 

in the LiDAR-generated point clouds that were also too poor to extract an accurate measurement 

from.  In the following sections, each point cloud model will have a more in-depth individual 

description that will give an overall summary of the generated point cloud and its comparison to 

the corresponding LiDAR point cloud. There is also a standard deviation and coefficient of 

variation (CV) for each point cloud. These values are meant to provide an overall description of 

the point cloud’s density distribution. A higher coefficient of variation means that the point cloud 

is less uniform. As can be seen in Table 6, the LiDAR point clouds have a lower CV value, 

meaning they are slightly more uniform than the image-based point clouds. Another thing to note 

is the visibility of the signs depending on the size of the sign. For the most part in the 

photogrammetry models, large signs such as overhead signs are easy to ready and usually 

generated in a good fashion. As the signs get smaller they tend to become less legible, however 

they still have good geometric data and sign ratios can be extracted from them. Signs such as 

mile marker signs, and some other signs such as speed limit signs can be slightly hard to read. 

However, spatial data is conserved and sign ratios can still be measured.  
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Table 6 – Measurement overview from image-based and LiDAR-based point clouds for asset management 

Model 
Sensing 

Technology 

Sign Ratio Errors (%) 
Overall Model 

Error (%) 

Average Sign 
Density 

(Points/in2) 

Standard 
Deviation of 
Sign Density 

Coefficient of 
Variation of 
Sign Density 

(CV) 

Small Medium Large 

Model 1 
Image-Based  2.11 6.89 4.70 5.09 35.3 18.4 0.52 
LiDAR 4.39 5.40 1.51 3.93 0.74 0.32 0.44 

Model 2 
Image-Based  1.68 7.40 6.42 5.35 14.7 5.38 0.37 
LiDAR 2.78 1.56 6.41 3.81 0.89 0.37 0.42 

Model 3 
Image-Based  5.90 4.69 6.96 5.16 35.4 13.1 0.37 
LiDAR 2.96 2.91 4.25 3.48 0.96 0.41 0.42 

Model 4 
Image-Based  3.61 2.56 5.92 3.94 21.9 12.2 0.56 
LiDAR 1.71 2.15 4.93 2.81 0.61 0.20 0.33 

Model 5 
Image-Based  3.61 2.56 5.92 3.51 38.8 24.8 0.64 
LiDAR 1.71 2.15 4.93 2.73 0.91 0.47 0.52 

Model 6 
Image-Based  1.22 4.45 3.29 2.92 28.0 13.7 0.49 
LiDAR 1.23 3.27 3.47 4.11 1.63 0.67 0.41 

Averages 
Image-Based     4.33 29.0 14.6 0.49 

LiDAR    3.48 0.96 0.41 0.42 

  
 

4.2.2 Model 1 

Model one was one of the first highway models generated. A large LiDAR roadway point 

cloud section was obtained from UDOT, and then it was split into three sections to make data 

processing a bit smoother. Model one was the first portion of the LiDAR point cloud obtained. 

Signs and pavement marking in this particular model were generated nicely, however this stretch 

of roadway passes under two bridges which caused a slight disruption within the model. The 

bridges cast a dark shadow on the road, and the lighting changes dramatically while passing 

under the bridges. This caused a slight break and skew in the model under the first bridge, but for 

the most part signs were unaffected. There was one mile-marker sign directly under this first 

bridge in the shadows, and this sign was not generated very well. This mile marker sign was one 

of the aforementioned outliers, and as you can see in Table 7, the relative error for this particular 

sign was almost 50 percent.  Other than the singular mile marker sign, all other signs for this 

model were generated nicely and most relative errors are considerably low. Also, below the table 

you will see information regarding the density of this model compared to the density of Mandli’s 

model. As mentioned before, the density of generated points in the photogrammetry model is 

denser than the density of generated points for the LiDAR model. One thing you will notice in 

this model and in others is the saturation of generated points in the model. Both image-based and 

LiDAR-based models have a higher saturation closer to the data acquisition sensor. As generated 

points get father from the sensor, they become less dense and slightly more distorted.  



 

43 

 

Table 7 – Model 1 Sign Ratio Table 
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(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 10 – Comparison of point cloud density for model 1. Number of Neighbors Density for (a) image-based 

model section saturation, (b) image-based model histogram, (c) LiDAR model section saturation, (d) LiDAR 

model histogram 

 

4.2.3 Model 2 

 

Model two is similar to Model one in terms of relative errors and point cloud density. The 

generated signs in this model are generated well, and this particular model is very dense.  This is 

likely due to the fact that data for this collection was collected on a sunny day and there was 

limited traffic on this section during this particular time. There was only one sign in this model 

that was generated poorly.  You will notice that some signs in the following tables do not have 
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an actual sign ratio. The Utah Standard Highway Sign Supplement, The Manual on Uniform 

Traffic Control Devices (MUTCD), and UDOT’s publicly shared highway sign map overlay was 

used to find out the actual dimensions of various signs throughout the highways. While these 

resources were able to provide most of the dimensions, there were a few signs that did not have 

standard sizes due to varying road conditions.  The sign codes are also provided by the Manual 

on Uniform Traffic Control Devices and UDOT’s highway sign map to help the reader have a 

definite understanding of the exact sign.
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Table 8 – Model 2 Sign Ratio Table 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 11 – Comparison of point cloud density for model 2. Number of Neighbors Density for (a) image-based 

model section saturation, (b) image-based model histogram, (c) LiDAR model section saturation, (d) LiDAR 

model histogram 

 

4.2.4 Model 3 

 

Section 3 is the final section of the first large point cloud obtained from Mandli. It is 

worth noting that this is the densest section of all three sections, and this is due to the fact that 

section three is an exit roundabout off of the highway. Due to this section being a roundabout 
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exit, traveling speeds were much slower on this section as opposed to highway traveling speeds 

for sections one and two. This holds true for the LiDAR model as well. As you can see, the 

LiDAR model for this particular section is denser than other LiDAR models, which is also due to 

the speed of data collection. The slower you travel during data collection, the more data the 

sensor can gather, making point clouds denser the slower you drive. Signs for this section were 

generated well, however most signs on this roundabout exit were smaller signs on the side of the 

roadway, and smaller signs tend to be more difficult to generate because of the limited data 

gathered during data acquisition. Nonetheless, the overall error for this section is less than six 

percent, and it is still comparable to the LiDAR point cloud.  
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Table 9 – Model 3 Sign Ratio Table 

 

Image from 

model

Location in 

point cloud 

(0=beginning, 

100=end)

Height Width
Ratio 

(H/W)

Sign 

Density

Image of 

actual 

sign

Sign 

Code

Actual 

Ratio 

(H/W)

Percent 

Error

Location in 

point cloud 

(0=beginning, 

100=end)

Height Width
Ratio 

(H/W)

Sign 

Density

Sign 

Code

Actual 

Ratio 

(H/W)

Percent 

Error

Small 5.00 1.48 0.49 3.02 23.40 D10-1A 3.00 0.68 Small 5.00 0.98 0.31 3.16 2.75 D10-1A 3.00 5.38

15.00 1.30 0.39 3.33 22.82 D10-1A 3.00 11.11 15.00 1.01 0.35 2.89 2.57 D10-1A 3.00 3.81

85.00
Not 

Generated

Not 

Generated

Not 

Generated
D10-1A

Not 

Generated

Not 

Generated
85.00 0.99 0.32 3.09 1.81 D10-1A 3.00 3.13

Medium 10.00 2.40 2.29 1.05 22.38 W1-11 1.00 4.80 Medium 10.00 1.68 1.67 1.01 1.12 W1-11 1.00 0.60

20.00 1.60 1.14 1.40 34.28 W1-8 1.33 5.26 20.00 0.75 0.59 1.27 0.22 W1-8 1.33 4.66

25.00 1.96 1.93 1.02 52.30 W3-3 1.00 1.55 25.00 1.10 1.11 0.99 0.38 W3-3 1.00 0.90

25.00
Not 

Generated

Not 

Generated

Not 

Generated
W3-3

Not 

Generated

Not 

Generated
25.00 1.23 1.19 1.03 1.69 W3-3 1.00 3.36

30.00 1.20 0.99 1.21 37.60 W1-8 1.33 9.09 30.00 0.72 0.53 1.36 0.23 W1-8 1.33 1.89

50.00 1.13 0.88 1.28 36.17 W1-8 1.33 3.69 50.00 0.83 0.60 1.38 0.21 W1-8 1.33 3.75

60.00 0.98 0.73 1.34 31.26 W1-8 1.33 0.68 60.00 0.83 0.68 1.22 0.25 W1-8 1.33 8.46

70.00 0.91 0.74 1.23 30.67 W1-8 1.33 7.77 70.00 0.82 0.59 1.39 0.22 W1-8 1.33 4.24

80.00 0.82 1.52 0.54 R3-8A
Sign 

Varies
- 80.00 0.67 1.13 0.59 - R3-8A

Sign 

Varies
-

Large 15.00 2.45 4.81 0.51 62.82 ES5-1A13 0.48 6.96 Large 15.00 1.43 2.74 0.52 0.51 ES5-1A13 0.48 9.60

Image-Based Sign Ratio for Model 3 LiDAR-Based Sign Ratio for Model 3
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 12 – Comparison of point cloud density for model 3. Number of Neighbors Density for (a) image-based 

model section saturation, (b) image-based model histogram, (c) LiDAR model section saturation, (d) LiDAR 

model histogram 

 

4.2.5 Model 4 

 

This particular section of roadway was from another large LiDAR point cloud. Again, the 

point cloud was split into separate sections for processing purposes, section 4.2.5 and 4.2.6 are 

both from this large LiDAR point cloud. Generated signs in this point cloud were generated in a 

good and acceptable fashion. There are very few problems with this model, however there is one 

thing worth mentioning. On the right side of the highway on this portion of roadway there is a 

large wall that runs parallel to the roadway, which causes a large shadow to be cast on portions 
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of the right side of the road. Fortunately, this shadow did not affect any of the highway signs, but 

there are some small sections of roadway that are omitted due to the shadow. Data collection for 

this portion of highway was done closer to normal highway speeds, however the density of the 

generated model is still very high and much more than the density generated in the LiDAR point 

cloud.  
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Table 10 – Model 4 Sign Ratio Table 

 

 

 

 

Image

Location 

in point 

cloud 

(0=beginn

ing, 

100=end)

Height Width
Ratio 

(H/W)

Sign 

Density

Image of 

Sign
Sign Code

Actual 

Ratio 

(H/W)

Percent 

Error
Image

Locatio

n in 

point 

cloud 

(0=begi

nning, 

100=en

d)

Height Width
Ratio 

(H/W)

Sign 

Densit

y

Actual 

Ratio 

(H/W)

Percen

t Error

Small 25 0.53 0.39 1.359 30.513 W13-5 1.333 1.9231 Small 25 1.087 0.8 1.359 0.664 1.3333 1.906

25 0.54 0.4 1.35 31.141 W13-5 1.333 1.25
Sign 

Missing
25 - - - - - -

85 0.55 0.4 1.375 40.192 W1-8 1.333 3.125 85 1.219 0.893 1.365 0.689 1.3333 2.38

90 0.3 0.65 0.4615 37.45 W1-6 0.5 7.6923 90 0.728 1.481 0.492 0.467 0.5 1.688

95 0.55 0.43 1.2791 34.899 W1-8 1.333 4.0698 95 1.148 0.86 1.335 0.453 1.3333 0.116

98
Not 

Generated
- - - W1-8 - - 98 1.175 0.867 1.355 0.455 1.3333 1.644

100
Not 

Generated
- - - W1-8 - - 100 1.173 0.858 1.367 0.465 1.3333 2.535

Image-Based Sign Ratios for Model 4 LiDAR-Based Sign Ratios for Model 4
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Table 10 cont. – Model 4 Sign Ratio Table
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(a)  

(b) 

 

(c) 

(d) 

Figure 13 – Comparison of point cloud density for model 4. Number of Neighbors Density for (a) image-based 

model section saturation, (b) image-based model histogram, (c) LiDAR model section saturation, (d) LiDAR 

model histogram 

4.2.6 Model 5 

 

This model was the second portion of the previous model mentioned, and the output for 

this model is also good data. There were not as many signs on this portion of the road, however 

all of the signs that were on the roadway were generated in an acceptable fashion and sign ratios 

are also acceptable. This model has a good density, but it is not as dense as the previous portion 
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of this roadway. This is most likely caused by the angle of the sun. In section 4.2.5, the traveling 

direction was eastbound on interstate I-80 in the later hours of the afternoon so the sun was 

shining from behind while traveling. After the end of the previous model, the road curves to the 

right and begins heading south, which made the sun directly to the right, rather than behind. 

From looking at the table of generated signs in this section, you will see that the signs are a bit 

darker and not as vibrant and crisp as they are in other models. This is also due to the change in 

sun angle. Nonetheless, the overall quality of the point cloud, generated density, and sign ratio 

errors are very acceptable and are comparable to other models even though lighting conditions 

were less than optimal.  
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Table 11 – Model 5 Sign Ratio Table

 

 

LiDAR-Based Sign Ratio for Model 5

Image

Location in 

point cloud 

(0=beginning, 

100=end)

Height Width
Ratio 

(H/W)

Sign 

Density

Image of 

Sign

Sign 

Code

Actual 

Ratio

Percent 

Error
Image

Location in 

point cloud 

(0=beginning, 

100=end)

Height Width
Ratio 

(H/W)

Sign 

Density

Actual 

Ratio

Percent 

Error

Small 30 1.11 0.34 3.26 73.81 D10-5 3.33 2.06 Small 30.00 1.48 0.44 3.34 1.71 3.33 0.16

70 0.95 0.77 1.23 19.49

Could not 

find 

specific 

sign

Could 

not 

find 

code

1.25 1.30 70.00 1.49 1.17 1.27 0.57 1.25 1.63

70 0.86 0.69 1.25 58.48

Could not 

find 

specific 

sign

Could 

not 

find 

code

1.25 0.29 70.00 1.41 1.15 1.23 1.05 1.25 1.91

Medium 5 0.67 2.17 0.31 6.88 E5-1P 0.29 4.98 Medium 5.00 0.72 2.34 0.31 0.37 0.29 4.84

20 1.26 1.94 0.65 58.81 E5-1A 0.63 3.92 20.00 1.46 2.30 0.64 0.73 0.63 1.70

Large 5 5.19 4.5 1.15 26.47

Sign Varies 

depending 

on needs

GS1-1 1.09 5.72 Large 5.00 6.15 5.34 1.15 1.31 1.09 5.64

5 1.95 5.77 0.34 27.39

Sign Varies 

depending 

on needs

GS2-1B 0.34 0.87 5.00 2.25 6.70 0.34 0.65 0.34 1.30

Image-Based Sign Ratio for Model 5
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(a) 
 

(b) 

 

(c) 
 

(d)  

Figure 14 – Comparison of point cloud density for model 5. Number of Neighbors Density for (a) image-based 

model section saturation, (b) image-based model histogram, (c) LiDAR model section saturation, (d) LiDAR 

model histogram 

 

4.2.7 Model 6 

 

This model was also an exit section much like the model in section 4.2.4 of this paper. 

However, this exit section was linear instead of a roundabout, and traveling speeds were much 
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higher because on this exit there were many cars, and there was an option to merge back onto the 

highway and an option to exit onto 1300S. This higher rate of travel caused a bit of a problem 

when it came to alignment at first. However, after numerous attempts and trying different 

settings, an acceptable model was generated with good signs and pavement markings. In Context 

Capture, image alignment can be done using a few different methods such as: default, 

exhaustive, and sequential matching. Default uses all images in no particular order and tries to 

align images to other images that share key points. Exhaustive image alignment uses the same 

settings as default image alignment, however it does an exhaustive matching algorithm that tries 

numerous iterations to align images. The best image alignment setting in the asset management 

case was sequential matching. Sequential matching is best done when images are extracted in a 

sequential order, such as they are during these linear data collections. With sequential matching, 

you can set the maximum distance of images. For example, if you set the max image distance to 

three images, the program will try to align the first image with the next 3 images in the sequence, 

and once the image is aligned, it will move to the second image and try to match it to the next 

three images. Different image distances, and also different frames per second for this particular 

section were tested. Using sequential matching and 50 FPS, a good model with a good overall 

density and accuracy of generated signs was created.  
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Table 12 – Model 6 Sign Ratio Table

 

Image

Location in 

point cloud 

(0=beginning, 

100=end)

Height Width
Ratio 

(H/W)

Sign 

Density

Image of 

Sign

Sign 

Code

Actual 

Ratio

Percent 

Error
Image

Location in 

point cloud 

(0=beginning, 

100=end)

Heigh

t
Width

Ratio 

(H/W)

Sign 

Densit

y

Actual 

Ratio

Percent 

Error

Small 5 0.01 0.00 3.12 33.40
D10-

1A
3.00 3.97 Small 5 0.93 0.32 2.89 0.61 3.00 3.65

70 0.02 0.01 1.30 46.17 W13-2 1.33 2.82 70 1.50 1.16 1.29 2.18 1.33 3.02

Medium 5 0.04 0.03 1.32 19.45 E5-1A 1.36 3.47 Medium 5 2.50 1.72 1.45 1.28 1.36 6.59

85 0.02 0.04 0.47 30.46 E5-1A 0.48 1.73 85 1.55 3.16 0.49 2.00 0.48 3.01

Large 50 0.07 0.08 0.89 10.31 E1-1A 0.86 2.58 Large 50 5.15 5.71 0.90 2.09 0.86 4.31

50 0.04 0.05 0.85 - E6-2A

Could 

not find 

ratio

- 50 3.11 3.83 0.81 -

Could 

not 

find 

-

Image-Based Sign Ratio for Model 6 LiDAR-Based Sign Ratio for Model 6
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(a)  

(b) 

 

(c)  

(d)  

Figure 15 – Comparison of point cloud density for model 6. Number of Neighbors Density for (a) image-based 

model section saturation, (b) image-based model histogram, (c) LiDAR model section saturation, (d) LiDAR 

model histogram 

4.3 Unmanned Aerial System Data  

The point clouds that were created using aerial data had a slightly different outcome than 

the point clouds that were created with the mobile GoPro procedures. The length of 

reconstructed highway is about one quarter of a mile (Figure 16). The UAS LiDAR took about 
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eight minutes to complete the data collection, while the DJI drone took about six minutes to 

collect data along the same section. Due to the direction of the LiDAR scanner on the drone, 

overhead and side signs were unable to be captured within the model. The DJI drone was angled 

60 degrees below the horizon, therefore it was able to capture overhead and side highway signs. 

However, due to the height that the drone was flying at, nearly all of the signs were not generated 

dense enough to extract measurements. More than 97% of the generated points within the image-

based point cloud have no neighbor within a circle of radius 4cm. Though the sign measurements 

were not generated perfectly, their locations within the model are still accurate enough to extract 

location information for the purposes of asset mapping. The drones are also able to accurately 

map terrains as shown in Figure 16. The drone-based data acquisition procedures could also be 

used for highway bridge inspections, though a more thorough data review would need to be 

completed. Daj et al. (2013) recommends a distance of less than 25 meters [19]. Popescu et al. 

(2019) recommends to be as close as 15 meters [20]. Overall, it is up to the engineer to decide 

which technology above would be most beneficial to their case. More case studies would be 

necessary for a more in-depth assessment of the capabilities of the drones with respect to the case 

studies at hand.  

 

 

(a) 

 

(b) 

Figure 16 – Comparison between (a) DJI Mavic Pro 2 point cloud using photogrammetry and (b) DJI M600 

Drone point cloud with LiDAR 

4.4 Pedestrian Access Ramp 

Pedestrian access ramp data was evaluated quite differently from asset management data. 

The most important aspect of pedestrian access ramp data is ensuring that the ramp components 
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are within specifications and their requirements are met. It was of interest to the researchers to 

see how accurate extracted point cloud measurements could be, and whether or not they line up 

with inspections that are done in the field according to UDOT’s specifications. Evaluation of 

pedestrian access ramps are a bit more straightforward and they include measuring the slope of 

various areas, and the distances of those areas to ensure that they are passing per UDOT’s 

standards. In the following sections you will see tables including measurements that were 

extracted from point clouds (Table 13), and you will also see the UDOT C-170 evaluation form 

that was used to compare in-field measurements to extracted point cloud measurements.  

Table 13 – Pedestrian access ramp slope errors 

Pedestrian Access Ramp Model Technology Slope Error (%) 

Ramp 1 
Photogrammetry 0.60 

LiDAR 0.27 

Ramp 2 
Photogrammetry 0.28 

LiDAR 0.19 

Ramp 3 
Photogrammetry 0.28 

LiDAR 0.16 

Ramp 4 
Photogrammetry 0.35 

LiDAR 0.19 

Ramp 5 
Photogrammetry 0.24 

LiDAR 0.18 

Ramp 6 
Photogrammetry 0.16 

LiDAR 0.14 

Average Error 
Photogrammetry 0.32 

LiDAR 0.19 

Standard Deviation 
Photogrammetry 0.15 

LiDAR 0.04 

Coefficient of Variation Photogrammetry 0.48 
 LiDAR 0.24 
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Table 14 – Data Processing Table for Pedestrian Access Ramps 

 

Ramp File Name Image Location Inspection Number of Number of Quality of Point Cloud Processing Settings Keypoints Tie Points RMS

Ramp 1
D:\Research\Pedestrian Access 

Ramps\Ramp 1
Ramp 1

31 Photos 

Total, 31 

aligned

258,651,814

Point Cloud Quality is great. 

I think It is due to the large 

camera sensor size that I 

was using. Also the lighting 

was a good sunny day with 

little to no clouds. 

Aerotriangulation took 2 minutes 

and 40 seconds. I used the default 

image alignment that context 

capture offers, the only thing I 

changed is keypoint density from 

normal to high. All images were 

aligned correctly. The point cloud 

size before processing was 9.8 Gb 

and no tiles were needed. The point 

cloud was processed in 44 minutes 

and 22 seconds. Model processed 

without a flaw

Median of 

47,166 

keypoints 

per image

Median of 

384 tie 

points per 

photo

0.69 

pixels

Ramp 2
D:\Research\Pedestrian Access 

Ramps\Ramp 2
Ramp 2

37 Photos 

total, 37 

aligned

429,797,343 

(295,559,874 

Cleaned)

Great point cloud quality

Aerotriangulation took 4 minutes 

and 10 seconds. I used the default 

image alignment that context 

capture offers, the only thing I 

changed is keypoint density from 

normal to high. All images were 

aligned correctly. The point cloud 

size before processing was 5.9 Gb 

and no tiles were needed. The point 

cloud was processed in 48 minutes 

and 12 seconds. Model processed 

without a flaw

Median of 

46,394 

kepoints 

per image

Median of 

162 tie 

points per 

image

0.75 

pixels

Ramp 3
D:\Research\Pedestrian Access 

Ramps\Ramp 3
Ramp 3

29 total 

photos, 27 

aligned

313,767,481 

(153.790,452 

Cleaned)

Great point cloud quality

Aerotriangulation took 4 minutes 

and 14 seconds. I used the default 

image alignment that context 

capture offers, the only thing I 

changed is keypoint density from 

normal to high. Only 2 images could 

not be aligned because they were 

too close and there was nothing to 

distinguish it in the photo. The point 

cloud size before processing was 7.4 

Gb and no tiles were needed. The 

point cloud was processed in 48 

minutes and 12 seconds. Model 

processed without a flaw

Median of 

46400 

keypoints 

per image

Median of 

189 tie 

points per 

photo

0.73 

pixels
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Table 14 cont. – Data Processing Table for Pedestrian Access Ramps 

Ramp 4
D:\Research\Pedestrian Access 

Ramps\Ramp 4
Ramp 4

31 total 

photos, 31 

aligned

264,338,208 Great point cloud quality

Aerotriangulation took 3 minutes 

and 10 seconds. I used the default 

image alignment and only changed 

keypoint density to high. All images 

were properly aligned. The point 

cloud size before processing was 10 

GB, no tiling was needed. It took 43 

minutes and 58 seconds to process. 

Model processed without a flaw. 

Median of 

22776 

keypoints 

per image

Median of 

524 tie 

points per 

photo

0.64 

pixels

Library 

Ramp

D:\Research\Pedestrian Access 

Ramps\Library Ramp

No Inspection 

Report

29 total 

photos, 27 

aligned

436,552,997 

(267,786,121 

Cleaned)

Point Cloud quality is great. 

Very clean model

Aerotriangulation took 1 min and 23 

seconds. I used the default 

alignment settings, but changed key 

point density to high and pair 

selection mode to exhaustive. I also 

allowed component construction 

mode to do multiple passes. Only 

two images were unable to be 

aligned, even after numerous 

alignment efforts. The point cloud 

size before processing was 5.9 GB so 

no tiling was needed. Processing 

was interrupted by a computer 

crash but finished with no problems 

after the computer rebooted. 

Processing took about 50 minutes. 

Median of 

46968 

keypoints 

per image

Median of 

125 tie 

points per 

photo

0.74 

pixels

4th West 

& 3rd 

North

D:\Research\Pedestrian Access 

Ramps\4th West and 3rd North

No Inspection 

Report

25 total 

photos, 24 

aligned

247,958,617 

(162,860,993 

Cleaned)

Point cloud quality is good, 

however it is not the most 

dense or best point cloud. It 

should serve this purpose 

well though. 

Aerotriangulation took 1 min and 

20s. I used the default 

aerotriangulation settings. Normal 

keypoint density, default pair 

selection mode, and one pass for 

component construction mode. 

Aerotriangulation took a few tries 

and the first few times I was unable 

to get 8 of the images aligned. I 

decided to use GCP's in the images 

that werent aligned and referenced 

the same GCP in the images that 

were aligned. After this I was able to 

get all but 1 image aligned. 

Median of 

26,733 

keypoints 

per image

Median of 

352 tie 

points per 

photo

0.63 

pixels
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4.4.1 Ramp 1 

Ramp 1 is a pedestrian access ramp near University Hospital. As you can see below in 

Figure 18 (c), comparing the extracted measurements to UDOT’s in-field measurements, the 

error between the measuring procedures was 0.6% for photogrammetry and 0.27% for LiDAR. 

This error is excluding the one outlier measurement of one of the flares of the pedestrian access 

ramp. It is believed that the measurement extracted from the point cloud is the more accurate 

measurement of the two. The flare is only about a foot long, and during the in-field inspections a 

four-foot-long level was used to measure the slope of this particular component. There was a lot 

of overhang of the level while measuring this area which leads us to believe that it could lead to 

a bad slope reading. Even after measuring the slope of that flare separately in the field with a 

Leica Disto D5, slope readings were around 22%, which corroborates the measurement extracted 

from the point cloud. Regardless of this one outlier, all other slopes are very close to the 

extracted slopes from the field. 

 

(a) 

 

(b) 

Figure 17 – Ramp 1 point clouds using (a) photogrammetry and (b) LiDAR 

 

 

  

 

  



 

66 

 

 

(a) 

 

(b) 

 

 

(c) 
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Figure 18 – Comparison of UDOT’s in-field measurements to measurements extracted from image-based 

point clouds for Ramp 1. (a) & (b) UDOT C-170 evaluation form, (c) extracted measurements vs. UDOT’s 

measurements.  

4.4.2 Ramp 2 

Ramp 2 is a pedestrian access ramp near the University (of Utah) Student Center. This 

ramp was chosen because it was built differently than the other access ramps in this project, yet 

the measurements are very accurate for this model as well. As you can see in Figure 20, the error 

between slopes extracted from the field and slopes extracted from the image-based point cloud 

model are 0.27%. The LiDAR error for this particular model was 0.19% (Figure 20 (c)). There 

were no outliers for this model and all extracted measurements were within a good range of the 

field measurements. The reason the LiDAR model is not shown in color is due to the fact that 

there was a heavy shadow cast over the ramp. While viewing this cloud with RGB colors, the 

ramp is shown very dark due to the shadow, which is why the model is shown in gray scale.  

 

(a) 

 

(b) 

Figure 19 – Ramp 2 point clouds using (a) photogrammetry and (b) LiDAR 
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Figure 20 – Comparison of UDOT’s in-field measurements to measurements extracted from image-based 

point clouds for Ramp 2. (a) & (b) UDOT C-170 evaluation form, (c) extracted measurements vs. UDOT’s 

measurements.  

 

(a) 

 

(b) 

 

 

(c) 
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4.4.3 Ramp 3 

Ramp 3 was another ramp near the university and was also chosen because of the 

different construction from other ramps in this portion of the project. Again, extracted 

measurements from the point clouds were very accurate, with an overall error of 0.28% for 

photogrammetry, and an error of 0.16% for LiDAR [Figure 22 (c)]. There were no problems with 

this access ramp’s measurements and all extracted measurements were within an acceptable 

requirement to the in-field measurements. There was also a heavy shadow on this ramp, so the 

LiDAR model is shown in gray scale.  

 

(a) 

 

(b) 

Figure 21 – Ramp 3 point clouds using (a) Photogrammetry and (b) LiDAR 
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(a) 

 

(b) 

 

 

(c) 
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Figure 22 – Comparison of UDOT’s in-field measurements to measurements extracted from image-based 

point clouds for Ramp 3. (a) & (b) UDOT C-170 evaluation form, (c) extracted measurements vs. UDOT’s 

measurements.  

 

4.4.4 Ramp 4 

Ramp 4, much like other access ramps in this project, was chosen because of its differing 

features and ramp components. This particular ramp had a higher overall error between in-field 

measurements and image-based point cloud measurements, however the error was still only 

0.35%. The LiDAR point cloud is still consistent with an error of 0.19%. There are two 

measurements that could be considered outliers and those measurements are the flares of the 

pedestrian access ramp. However, as mentioned before, it is believed that the measurements from 

the point cloud are the more accurate measurements due to the accuracy of other extracted point 

cloud slopes. The smart level, too, was much too long to accurately measure the slope of each 

flare of the pedestrian ramp, and in-field measurements done with the Leica Disto D5 

corroborated the measurements that were extracted from the point cloud.  
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(a) 

(b) 

Figure 23 – Ramp 4 point clouds using (a) Photogrammetry and (b) LiDAR 
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(a) 

 

(b) 

 

 

(c) 

Figure 24 – Comparison of UDOT’s in-field measurements to measurements extracted from image-based 

point clouds for Ramp 4. (a) & (b) UDOT C-170 evaluation form, (c) extracted measurements vs. UDOT’s 

measurements.  
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4.4.5 Ramp 5 

Pedestrian Ramp 5, much like the other ramps, also has a very high accuracy of 

measurements. The overall error for the image-based reconstructed point cloud is 0.24%. The 

LiDAR-reconstructed point cloud has an even lower error percentage of 0.18. Pedestrian access 

ramp 5 does not have a UDOT C-170 evaluation form due to the fact that the final two ramps, 

ramps 5 and 6, were not done with UDOT representatives. However, in-field evaluations were 

still carried out using the UDOT C-170 procedures, but instead of a Smart Level, in-field 

measurements were done with a Leica Disto D-5 measuring tool to measure slopes. 

 

 

(a) 

 

(c) 
 

(b) 

Figure 25 – Ramp 5 point clouds using (a) Photogrammetry and (b) LiDAR. (c) Point cloud measurements 

 

4.4.6 Ramp 6 

 

 Ramp 6 is no different than the other models in that both photogrammetry and LiDAR 

presented low margins of error. The image-based point cloud had an overall error of 0.17%, and 

the LiDAR-based model had an overall error of 0.14%. This ramp was also inspected without 
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UDOT representatives, but the inspections were carried out in accordance with UDOT C-170 

standard procedures.  

 

 

(a) 

 

(c) 

 

(b) 

Figure 26 – Ramp 6 point clouds using (a) Photogrammetry and (b) LiDAR. (c) Point cloud measurements  

4.5 Summary  

For both case studies presented in this research report, image-based and LiDAR-based 

reconstructed point clouds both presented very accurate and comparable data. For asset 

management, the overall reconstructed sign error for image-based point clouds was 4.33%, with 

an overall average sign density of 29 points per square inch. The standard deviation and 

coefficient of variations were 14.6 and 0.49, respectively. For LiDAR-based reconstruction, the 

overall reconstructed sign error was 3.48%, with an overall sign density of 0.96 points per square 

inch. The standard deviation and coefficient of variation were 0.41 and 0.42, respectively. Both 

technologies were very similar in terms of reconstructed sign errors, having a difference of less 
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than 1% error. The image-based point clouds were much more dense than the LiDAR-based 

point clouds, but this is most likely due to the fact that Mandli Communications limits the 

amount of data gathered due to the shear amount of data gathered and transferred. The standard 

deviations and coefficients of variation point to the fact that the LiDAR point clouds are slightly 

more uniform when it comes to point cloud density. The lower the coefficient of variation, the 

less variability the point cloud has in density. Since image-based reconstruction has a coefficient 

of variation of 0.49, and LiDAR has a CV of 0.42, the LiDAR point clouds are slightly more 

uniform.  

For the pedestrian access case study, both technologies are very comparable in terms of 

measurement errors. The errors were measured from how much the point cloud-extracted 

measurement deviated from the measurements that were extracted in the field. The overall error 

for image-based reconstruction is 0.32%, with a standard deviation of 0.15 and a coefficient of 

variation of 0.48. For LiDAR-reconstructed point clouds, the overall error is 0.19%, with a 

standard deviation of 0.04 and a coefficient of variation of 0.24. Much like the asset management 

case study, LiDAR technology was more accurate and the measurements had more uniformity in 

terms of how much they deviated from the extracted in-field measurements. Nevertheless, the 

image-based point clouds were still highly accurate, with an error percentage of only 0.13% 

higher than LiDAR-based point clouds.  

 

5.0  CONCLUSIONS 

5.1  Summary 

It is imperative for transportation facility managers to have up-to-date knowledge of the 

current state of all assets in various areas of their departments. For an individual to know the 

current status of all assets, there must be an efficient, accurate method of data collection and 

evaluation so that managers can accurately plan and implement necessary procedures to take care 

of poor assets. There are some technologies being used such as LiDAR to manage these assets 

currently, however, LiDAR is a very expensive and involved technology that requires special 
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knowledge and operators to gather and interpret data. Image-based 3D reconstruction (i.e., 

photogrammetry) is a much cheaper and simpler alternative to LiDAR, that provides similar data 

outputs in the form of 3D point clouds. The objectives of this research project were to compare 

image-based reconstructed point clouds to LiDAR points clouds to see if photogrammetry can be 

used as an acceptable alternative to the currently used LiDAR technology. While 

photogrammetry may be subject to slightly less accurate data, the ease of use, low cost, and high 

functionality of image-based reconstruction technologies far outweighs the slight drop in point 

cloud accuracies.  

Data was gathered in two separate case studies, with each study being slightly different 

from the other in terms of data collection and data evaluation. The first case study was asset 

management of roadways with an emphasis on highway data collections. For this procedure, a 

camera capable of capturing high resolution videos at high frame rates was mounted to the hood 

of a vehicle using a suction cup mount, and data was collected while driving around various 

areas of city streets and highways around Salt Lake City. The second case study was focused on 

pedestrian access ramp evaluations. For this study, images were captured in a circular pattern 

around various pedestrian access ramps and uploaded into 3D reconstruction softwares for 

processing and evaluation.  

Data was also evaluated differently in each case study that is specific to the type of data 

gathered and processed. For asset management, evaluations were carried out by comparing 

reconstructed sign size ratios (height to width), to the actual size of the sign in the real world. 

The purpose of this comparison was to see how accurately objects are generated in image-based 

and LiDAR-based point clouds. For pedestrian access ramps, data was evaluated by extracting 

slope measurements from various access ramp components, and comparing the LiDAR-based 

and image-based measurements to the measurements that were extracted during an in-field 

evaluation done according to the UDOT C-170 Pedestrian Access Ramp Evaluation form. Along 

with the unique case-specific evaluations, evaluations of point cloud density for each case study 

were conducted. Various density measurements were extracted; however, the most important 

density variable is the number-of-neighbors calculation. The number-of-neighbors density 

calculation gives a comprehensive overview of the density of a point cloud. This characteristic is 

calculated by defining a circle with a user-chosen radius, and the program then imposes circles of 
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the given radius throughout all areas of the point cloud. The final density output defines the total 

number of 3D points inside each user-defined circle throughout various areas of the point clouds, 

so the viewer has a comprehensive idea of how the density varies in different areas. The research 

presented in this report points to the fact that photogrammetry could most definitely be used for 

transportation purposes and provide a high quality and accurate point cloud model. The small 

amount of accuracy sacrificed by using photogrammetry is far outweighed by the low cost and 

ease of use.  

5.2  Limitations and Challenges 

 There were a few noticeable challenges encountered while conducting this research, and 

the technology was found to have some minor limitations. The first challenge encountered during 

this research project was finding a photogrammetry software that would process the sequential 

images from asset management data collections. As previously mentioned and shown in Figure 

27 (a) below, images should be acquired in a circular pattern with sufficient overlap between 

images for an accurate 3D model. Images acquired during data collections were captured in a 

linear pattern, as shown in Figure 27 (b). Linear images were tested in Reality Capture, Agisoft, 

3DF Zephyr, Pix4D, and Context Capture to see which program would provide the best model. 

Context Capture provided the most consistent and clear 3D models, so the rest of the research 

study was carried out using Context Capture as the main cloud processing software.   

Figure 27 – Image acquisition pattern. (a) Recommended capture procedure and photo overlap, (b) Pattern 

of photo overlap and image acquisition pattern during asset management data collection. The blue linear 

objects in photo (b) are the extracted positions of extracted frames.  

 

(a) 

 

(b) 
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Another challenge encountered while conducting asset management research was finding 

the most opportune time to collect data due to environmental conditions. Photogrammetry 

softwares can be sensitive to reflective surfaces in images. Factors such as snow, rain, sunlight, 

and car reflections can cause problems with reconstruction. If there is too much sunlight during 

data collections, the light may reflect off of various objects such as vehicles, items in the road, 

and highway signs. These conditions were usually encountered during days with no cloud cover, 

and the sun shining from behind the vehicle of travel. It is best to collect data on sunny days with 

intermittent cloud cover to prevent constant direct sunlight. Factors such as rain and snow can 

also be an issue. Utah does not get as much rain as other states, however snow can be a problem. 

During periods of heavy snow, it is difficult to collect good data because of the snow on the 

shoulders of roadways. Even when a road is plowed, there is still a lot of snow surrounding the 

roadway and landscape surfaces, which can cause too much reflection in images leading to a 

poor 3D model.    

One of the biggest limitations of asset management data collections using 

photogrammetry is the speed that one is able to travel and still acquire good data. During this 

research, it was concluded that videos gathered while traveling greater than 50 miles per hour 

were not able to be processed. One of the most important aspects of image alignment during 

photogrammetry reconstruction is having enough keypoints in each image to be able to have an 

accurate alignment. As you can see in the following Figure 28, keypoint alignment is best 

between 10-30 miles per hour. Good models were attainable at speeds greater than 40 miles per 

hour, however image alignment was much more difficult. Above 50 miles per hour, image 

alignment was unsuccessful, therefore a 3D point cloud model could not be created. A keypoint 

analysis was done using speeds from less than ten miles per hour, to a speed of 40 miles per 

hour. With the exception of location one, the total number of keypoints decreases as speed 

increases [Appendix A, Figure 36]. This is believed to be the reason for poor image alignment 

while going faster than 50 miles per hour.  
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Figure 28 – Number of keypoints of 3 locations according to data acquisition speed. 

 

Along with the speed limitation comes the challenge of being able to travel at a lower rate 

of speed on a highway. Most highway speeds are around 65-70 miles per hour, so it is imperative 

to collect data during low traffic hours. High amounts of traffic can cause obstructions in the 

extracted images which may lead to failed data processing, not to mention it can be dangerous to 

drive slower than the flow of traffic. The most effective time to collect data was between 9 a.m. 

and 1 p.m. on weekdays, and weekend afternoons. This allowed for slower travel on the 

roadways with less chance of interrupting traffic or causing a collision. 

6.0  RECOMMENDATIONS AND IMPLEMENTATION 

6.1  Recommendations 

There are a few key recommendations in order to make data collection and processing a 

more streamlined process. The first recommendation for asset management data collection is to 

pay close attention to the time of day and lighting conditions. If it is earlier in the day and the sun 

is rising from the east, it is best to collect data driving west to ensure that assets are adequately 

illuminated, and the sun is not shining directly into the camera sensor. Likewise, later in the 

afternoon as the sun is setting to the west, it is best to collect data driving east for the same 
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reason. Another factor to keep in mind while collecting data is the speed of travel. Though 

satisfactory results are achievable up to 50 MPH, it is best to travel as slow as possible during 

data collection to ensure the camera sensor is gathering the most amount of data possible. One 

factor that must be handled while driving slower speeds during data collections is the fact that 

the more data the sensor is gathering, the more robust the point cloud will be, leading to large file 

sizes. In order to combat storage requirement problems during post-processing, down-sampling 

should be used to ensure that file sizes do not get too large. As can be seen in Table 15 below, 

most point clouds can be down-sampled by 75% while retaining data accuracy and visual 

representations. High-density point clouds are good, but one has to ask the question ‘how much 

data is too much?’ The point clouds before down-sampling were very good quality, but even 

when down-sampled by 75%, the point clouds still retained the high accuracy and visual 

characteristics of the non-down-sampled point clouds.  

Table 15 – Effect of down-sampling on point cloud quality 

Effects of down sampling on file size and sign visibility 
 

Model  
down sampling percentage 

100% 75% 50% 25% 

Model 1 

# of Points 351,960,833 263,970,625 175,980,417 87,990,208 

File Size 11.1 GB 8.84 GB 5.89 GB 2.94 GB 

Visibility Great Great Good Good 

Model 2 

# of Points 318,014,773 238,511,080 159,007,387 79,503,693 

File Size 10 GB 7.99 GB 5.33 GB 2.66 GB 

Visibility Great Great Good Good 

Model 3 

# of Points 770,930,961 578,198,221 385,465,481 192,732,740 

File Size 24.4 GB 19.3 12.9 GB 6.46 GB 

Visibility Great Good Good Fair 

Model 4 

# of Points 714,905,162 536,178,872 357,452,581 178,726,291 

File Size 22.6 GB 17.9 GB 11.9 GB 5.99 GB 

Visibility Good Good Fair Fair 

Model 5 

# of Points 570,359,305 427,769,479 285,179,653 142,589,826 

File Size 19.1 GB 14.3 GB 9.56 GB 4.78 GB 

Visibility Good Good Fair Poor 

Model 6 

# of Points 500,000,000 375,000,000 250,000,000 125,000,000 

File Size 16.7 GB 12.5 GB 8.38 GB 4.19 GB 

Visibility Great Good Good Fair 
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 In order for one to decide which technology would work best for their case, they need to 

decide what is necessary when using these technologies for virtual reconstruction, as both have 

strengths and weaknesses. Image-based reconstruction can be a very useful technology for lapses 

in model generation. For example, if the contracted LiDAR company scans a state’s roadways 

every two years, it is very likely that there will be gaps in updated models such as when a roadway 

has undergone construction, assets are added/changed, or a traffic accident causes changes to a 

roadway. It would be very simple for an individual to go out and collect data on these changed 

roadway sections rather than outsourcing a company to come back and scan just a few areas around 

the state. Also, in-field data storage is another advantage of image-based reconstruction. The 

camera that was used for the asset management portion of this research stores all collected data on 

a small micro SD (Secure Digital) card that is capable of storing large amounts of data on a small 

chip. The current LiDAR asset management approach requires the LiDAR company to physically 

mail a large amount of data on hard drives to processing offices in order to transfer data in the 

most efficient way possible. Although this may be okay in some cases, the process of physically 

mailing hard drives can be tedious and time-consuming. Another factor to consider is point cloud 

density. The denser a point cloud is, the larger the file size is, requiring more storage in the office. 

As mentioned previously, Mandli most likely uses technologies to limit the amount of data 

captured to ensure they have sufficient data without having too many unnecessary points. The only 

way to limit the amount of data the GoPro captures is by changing the resolution. 2.7K resolution 

has a high density of pixels, making the point cloud model very dense. The image-based point 

clouds require a larger amount of storage in the office; however, point clouds can be down-sampled 

without losing data accuracy in order to optimize data storage requirements in the office. Again, it 

depends on the needs of the individual requiring these point clouds, and careful consideration must 

be taken when deciding how much data is the most optimal to achieve the desired results. Both 

technologies are very useful, and each has a place during highway reconstruction and asset 

management.  

The pedestrian access ramp case study was a very straightforward case study with very 

limited problems encountered. The main factors to consider while collecting pedestrian access 

ramp data varies between each technology. For image-based reconstruction, the most important 

factor is to ensure that each image has sufficient overlap with the previous and following image. 

If images do not have sufficient overlap, the point cloud processing software will struggle to align 
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all images and create a dense and accurate point cloud. For LiDAR data collections, it is important 

to ensure that the LiDAR scanner is exactly level before carrying out scanning procedures to ensure 

that the reconstructed point cloud is level with the horizon so that extracted slope measurements 

are as accurate as possible.  

6.2  Implementation Plan 

This implementation plan has been written in accordance with the information presented 

in this report. It is assumed that all technology used is the same technology presented previously 

in the paper.  

 

6.2.1 Asset Management Implementation 

1. Choose the optimal time of day for data collection. Driving west is better early in the day etc.   

2. Mount the camera to the hood of the vehicle ensuring that the field of view can capture all 

side and overhead signs while omitting parts of the vehicle from the FOV (see below).  

 

 

(a) 

 

(b) 

Figure 29 – (a) camera mounting area and (b) field of view for a hood-mounted camera 

      

3. Ensure that the correct video settings are selected before beginning data collections. A 2.7k 

video resolution at 120 frames per second is recommended. 
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4. Begin recording video before the section of interest to ensure that the camera has enough 

time to begin recording and not miss any data. It is important to try and travel as slow as 

possible during this step to ensure that the most amount of data possible is captured.  

5. Once the section of interest has been recorded, analyze the video to ensure that all pertinent 

data has been captured before returning to the office for post-processing.   

6. Once all data has been gathered and appears to be satisfactory, return to the office and begin 

post-processing. The following steps are assuming Context Capture is used as the default 

cloud processing console.  

7. Begin a new project in context capture and save it to the desired locations.  

8. Import the recorded video into the Context Capture software and select the desired number of 

frames to be extracted. You can specify the start time and end time of the extracted frames, 

as well as the frequency of extracted frames. Even though video was recorded in 120 FPS, 

photos were extracted every 0.02 seconds (50 FPS), and then increased to 0.015 (66 FPS) if 

the first iteration failed. The largest number of extracted frames used is 0.01 (100 FPS), to 

ensure the system isn’t overloaded during processing. 

 

Figure 30 – Video frame extraction window 

9. For some cameras, the software will recognize the focal length and sensor size, however, it 

did not recognize the GoPro Hero 8 sensor size and focal length. The focal length is 2.92mm 

and the sensor size is 6.17mm. For Context Capture, only the width value of the sensor size is 

used.  
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10. Submit the images for aerotriangulation (image alignment). This step is where ground control 

points can be input if there are such points. In the aerotriangulation settings tab (shown 

below), there are a few key parameters to change. Keypoint density can be kept as normal, 

however, if the first few iterations fail, the density can be changed to ‘high’. Next, change the 

pair selection mode to sequence. Since the images from the video are extracted in a 

sequential manner, sequence selection mode allows the program to go sequentially through 

the images for matching. The maximal distance should be set anywhere from 3-6. It is best to 

start at 3 and go up from there if the triangulation is not satisfactory. Component construction 

mode should be set to multi-pass to allow the program numerous passes through the images 

for matching. Aerotriangulation can be an iterative process requiring numerous submissions 

before an acceptable model is generated. If aerotriangulation fails or is not satisfactory, it is 

best to adjust these parameters slightly before resubmitting image alignment. This step can be 

a trial-and-error process. 

 

Figure 31 – Aerotriangulation Settings 
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11.  Once image alignment is complete, submit a new 3D reconstruction. Depending on the 

processing power of the computer being used, an error such as the one below may be 

encountered.  

 

Figure 32 – Maximum RAM usage exceeded warning 

If this error is encountered, go into the spatial framework tab and change the mode to 

‘adaptive tiling’. This splits the model into a number of different tiles for separate processing 

to make the processing easier on the computer.  

12. Once the tiling step has been completed, it is time to submit the model for processing. 

Choose ‘submit a new production’. Name the model and select the output location, and in the 

‘purpose’ tab, select 3D point cloud. The rest of the tabs can stay as they are. Choose your 

export destination and submit the new production.  

13. Once the point cloud is done processing, we recommend opening it in Cloud Compare for 

viewing and measurement extractions. Cloud Compare is an open-source cloud viewing and 

processing software that is easy to use and has handled these point clouds very well.  

 

6.2.2 Pedestrian Access Ramp Implementation 

 

1. The first step is choosing an optimal time of the day to gather data on a pedestrian access 

ramp that will limit the number of pedestrians passing through the scene. People can be 

removed in post-processing, but limiting the amount of people in the scene limits the amount 

of cleanup that needs to be done later.  

2. For LiDAR: Upon arriving on the scene, ensure the LiDAR scanner is perfectly level and 

locked to the tripod before doing any scanning procedures.  

For Photogrammetry: Ensure that the camera settings are set to capture high-quality images 

with a large number of pixels. JPEG images with a size of 6240x4160 pixels were used in 

this study. 
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3. For LiDAR: Once the scanner is level, choose the appropriate settings for the scene and 

environmental conditions. Scans were done on sunny days, so the “bright” environmental 

setting was used, and density number 8 was used (the second highest density the scanner 

offers). If you have the option to view the scene before scanning, ensure that all pertinent 

ramp components are captured fully in the scene.  

4. For LiDAR: Begin scanning the scene. Once the LiDAR scanner begins scanning, there is no 

need to do anything else. Let the scanner finish its process before touching or moving the 

scanner.  

For Photogrammetry: Begin capturing images in a circular motion around the ramp. Ensure 

that each image has sufficient overlap between the previous and following images. It is 

imperative to ensure that each point in the scene is captured in at least 3 separate images to 

ensure the images have sufficient overlap for the image alignment process.  

5. For LiDAR: Once scanning has completed, if you have the option to view the point cloud, 

take a look at it and ensure that all details have been captured. If you are not satisfied, adjust 

the scanning parameters and scan the scene again.  

For Photogrammetry: Once all images have been captured, review each image to ensure that 

there is sufficient overlap between images and all ramp components have been captured. If 

the images look good, it is time to return to the office for post-processing.  

6. The following steps will only apply to photogrammetry. Since the LiDAR scanner generates 

the point cloud during the scanning process, there is no need for any post-processing other 

than cleaning noise from the scene that may have been caused by pedestrians or vehicles.  

7. Once you are back at the office, upload all captured images into the Context Capture 

software. Since a high-quality DSLR camera was used for these images, Context Capture 

automatically recognized the FujiFilm XT-30 sensor size and focal lengths.  

8. Submit the photo group for aerotriangulation. Keep all settings the same in the settings tab 

except for ‘component construction mode’. Choose ‘Multi-Pass’ to ensure the program 

makes multiple passes through the images to have the most accurate image alignment 

possible.  

9. Once all images have been successfully aligned, submit the aligned images for a new 

production. Choose 3D point cloud as the output, and use adaptive tiling for large models. 



 

88 

 

All pedestrian access ramps were significantly smaller in size than the asset management 

point clouds, so no adaptive tiling was needed.  

10. Submit the model for 3D point cloud production.  

11. Once the production has completed, open the point cloud in Cloud Compare and ensure that 

the final product is satisfactory before carrying out measurements.  
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APPENDIX A: SUPPLEMENTARY MATERIAL 

The following images in this appendix are supplemental material.  

 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

Figure 33 – Sample of highway asset management point cloud using LiDAR  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 34 – Sample of highway asset management point cloud using photogrammetry 
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Table 16 – Technology and equipment comparison 

Case Study Technology Equipment 

Cost of 

Equipme

nt 

Software Cost of Software 
In-Field 

Labor  

In-Field Data 

Storage 

Requirements  

Office Data 

Storage 

Requirements 

Vehicular 

Systems for 

Asset 

Management 

Photogram

metry 

GoPro 

Hero 8 

Black 

Edition 

$400 

Context 

Capture 

$9,100 (First 

year) 

+$1100 (yearly) 
5 min 

equipment 

setup + 

0.04 Man-

hr/mi 

~0.5 GB/Mi  

(2.7K @ 120 

FPS) 

~15 GB/Mi 

3DF 

Zephyr 

$149 (Lite) 

$3,200 (Pro) 

$4,200 (Aerial) 

(Perpetual) 

LiDAR 

2 * 

Velodyne 

HDL-32 

(x2) 

$49,000 

(for two) 

Roadview 

Workstatio

n  

Comes with 

Mandli 

Communication 

services 

1 hr 

equipment 

setup + 

0.036 Man-

hr/mi 

~3 Gb/Mi ~3 Gb/Mi 

Unmanned 

Aerial 

Systems for 

Asset 

Management 

Photogram

metry 

DJI Mavic 

2 Pro 
$1600 Pix4D 

$4,990 

(Perpetual) 

0.5 hr 

equipment 

setup + 0.4 

Man-hr/Mi  

~0.5 GB/Mi 
~2.7 

GB/Mi 

LiDAR 

DJI M600 

with 

VX15 

LiDAR 

Scanner 

$6000 

(Drone) 

$140,000 

(VX15) 

Pix4D 
$4,990 

(Perpetual) 

0.5 hr 

equipment 

setup + 

0.53 Man-

hr/Mi 

~1 GB/Mi ~1 GB/Mi 

Pedestrian 

Access 

Ramp 

Photogram

metry 

Fujifilm 

XT-30 

(18-55mm 

lens) 

$1300 

Context 

Capture 
See above 

0.08 Man-

hr/Ramp 

300 

Mb/Ramp 

(30 images, 

6240x4160)  

7.5 GB/Ramp 
3DF 

Zephyr 
See above 

LiDAR 
Maptek I-

Site 8820 

$30,000 

(Used) 

Maptek 

PointStudio 

Included with the 

purchase of the 

scanner 

0.25 Man-

hr/Ramp 

545 

Mb/Ramp  

545 Mb/R

amp  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 35 – (a-c) DJI M600 Drone with VX15 LiDAR Scanner. (d) DJI Mavic 2 Pro 

 



 

95 

 

Figure 36 – Number of matches of keypoints at 3 locations. Images (a), (d), (g) are location 1. Images 

(b),(e),(h) are location 2. Images (c), (f), (i) are location 3. 

 

 

 

 

 

(a) 

 

(b) 

 

(d) 

 

(e) 

 

(g) 

 

(h) 
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(c) 

 

(f) 

 

(i) 

Figure 36 cont.– Number of matches of keypoints at 3 locations. Images (a), (d), (g) are location 1. Images 

(b),(e),(h) are location 2. Images (c), (f), (i) are location 3. 

 


